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ABSTRACT 

Regulation of gene expression includes a variety of mechanisms to increase or decrease specific 

gene products. Gene expression can be regulated at any stage from transcription to post-

transcription and it’s essential to almost all living organisms, as it increases the versatility and 

adaptability by allowing the cell to express the needed proteins.  

 

In this dissertation, we comprehensively studied the gene regulation from both transcriptional 

and post-transcriptional points of view. Transcriptional regulation is by which cells regulate the 

transcription from DNA to RNA, thereby directing gene activity. Transcriptional factors (TFs) 

play a very important role in transcriptional regulation and they are proteins that bind to specific 

DNA sequences (regulatory elements) to regulate the gene expression. Current studies on TF 

binding are still very limited and thus, it leaves much to be improved on understanding the TF 

binding mechanism. To fill this gap, we proposed a variety of computational methods for 

predicting TF binding elements, which have been proved to be more efficient and accurate 

compared with other existing tools such as DREME and RSAT peaks-motif. On the other hand, 

studying only the transcriptional gene regulation is not enough for a comprehensive 

understanding. Therefore, we also studied the gene regulation at the post-transcriptional level. 

MicroRNAs (miRNAs) are believed to post-transcriptionally regulate the expression of 

thousands of target mRNAs, yet the miRNA binding mechanism is still not well understood. In 

this dissertation, we explored both the traditional and novel features of miRNA-binding and 
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proposed several computational models for miRNA target prediction. The developed tools 

outperformed the traditional microRNA target prediction methods (.e.g miRanda and TargetScan) 

in terms of prediction accuracy (precision, recall) and time efficiency.  
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CHAPTER 1: INTRODUCTION 

Regulation of gene expression includes a variety of mechanisms to increase or decrease specific gene 

products. These products are often proteins, but for those non-protein coding genes, the products are 

functional RNAs, such as transfer RNA (tRNA) and small nuclear RNA (snRNA).  Gene expression 

can be regulated at any stage from transcription to post-transcription. The regulation of gene 

expression is essential to almost all living organisms, including viruses, prokaryotes, and eukaryotes, 

as it increases the versatility and adaptability by allowing the cell to express the needed proteins. 

Abnormal gene expression usually leads to various diseases.  Diagnosing and curing these diseases 

demands better understanding of the gene regulation mechanisms.  Besides, better understanding of 

gene regulation mechanisms is also very helpful to bio-engineering field, as we might be able to 

significantly improve the bio-production with better regulation knowledge of specific genes. The 

gene regulation is of vital importance, yet our understanding is still very limited. In this dissertation, 

we studied the regulation of the gene expression from both transcriptional and post-transcriptional 

points of view.     

1.1 Studies of Gene Regulation at Transcriptional Level 

For the transcriptional regulation of the gene expression, direct interaction with DNA is the simplest 

and most direct way to regulate the gene expression.  It’s estimated that there are 1500 transcription 

factors (TFs) that plays a key role in gene regulation by directly binding to the DNA alone or through 

a protein complex (Vaquerizas, Kummerfeld et al. 2009). The mechanism of TF binding is not 

completely understood. One challenge in improving the understanding is the discovery of sequence 

motifs, which TFs used to recognize its binding targets. A DNA motif is defined as a DNA sequence 
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pattern that has some biological significance as being DNA binding sites for a regulatory protein (e.g. 

transcription factor).   Normally, the pattern is short (5-20 bps ) and is known to recur in different 

genes or multiple times within a gene (Lescot, Déhais et al. 2002).  A variety of DNA motif finding 

algorithms have been developed: MEME (Bailey, Williams et al. 2006),  Bioprospector (Liu, Brutlag 

et al. 2001), MDScan (Liu, Brutlag et al. 2002),  Phylocon (Wang and Stormo 2003), etc.  Those 

traditional methods are mainly based on the TF binding features like: over-representation, 

conservation, etc.  In this dissertation, we proposed a traditional type of method called MERCED, 

which take the mutation/substitution into the consideration of conservation. The comparison with 

other conservation based algorithms, such as Phylocon, shows the superior performance of 

MERCED.  

 

With the recent advance of Next Generation sequencing technique (NGS), Chromatin 

immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-Seq) is playing a more 

and more important role in finding TF binding sites. The actual binding location is typically within 

~50bp of the predicted location indicated by ChIP-Seq data (Wilbanks and Facciotti 2010).  A typical 

TF ChIP-Seq experiment yields up to thousands of predicted binding locations (TF peaks).  Most 

existing traditional motif finding algorithms such as MEME cannot handle such large datasets. 

Recently, there are a few motif finding algorithms, which can be applied to the ChIP-seq data, have 

been developed, such as DREME (Bailey 2011) and RSAT: Peaks-motif (Thomas-Chollier, 

Herrmann et al. 2012). Several computational methods identify motifs in top ChIP-seq peak regions 

(Jothi, Cuddapah et al. 2008, Valouev, Johnson et al. 2008). Such a type of approaches is likely to 

miss many potential motifs since TFBSs of cofactors may only occur in some ChIP-seq peaks 

(Bailey 2011). A few methods attempt to identify TFBSs and motifs in all peak regions, by using 
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known motifs to scan (extended) ChIP-seq peak regions to identify significantly co-occurring motifs 

(Sun, Guns et al. 2012, Ding, Cai et al. 2013). This type of approaches has achieved certain success 

in identifying motifs of underrepresented cofactors (Ding, Cai et al. 2013). Since current knowledge 

of known motifs is still limited, many TFBSs and motifs are likely missed by this type of methods. 

There are also methods for de novo discovery of TFBSs and motifs in all peak regions from a ChIP-

seq experiment (Hu, Yu et al. 2010, Kulakovskiy, Boeva et al. 2010, Bailey 2011, Thomas-Chollier, 

Herrmann et al. 2012). Note that TFBSs of certain cofactors may only occur in a small number of 

peaks (Bailey 2011, Stamatoyannopoulos 2012). Motifs of these cofactors may thus be statistically 

insignificant individually. The existing de novo motif discovery methods may thus miss motifs and 

TFBSs of many cofactors. 

 

Here we proposed a novel computational approach SIOMICS (systematic identification of motifs in 

Chip-seq data) (Ding, Hu et al. 2014) for de novo discovery of motifs and TFBSs from all peak 

regions of a ChIP-seq experiment. Instead of considering individual motifs separately for motif 

discovery, SIOMICS simultaneously considers motif modules, i.e., combinations of any number of 

motifs that co-occur in at least a predefined number of peak regions and have p-value of statistical 

significance smaller than a given threshold. Instead of considering only motifs that are significantly 

overrepresented in ChIP-seq peak regions, SIOMICS takes both overrepresented and non-

overrepresented motifs into account. Tested on 13 ChIP-seq datasets, SIOMICS identified many 

known motifs, new motifs, and their TFBSs. Tested on 13 simulated random datasets that were 

obtained by permuting the experimental sequence data, SIOMICS did not predict any false motif. 

Compared with two recent methods, DREME (Bailey 2011) and Peak-motifs (Thomas-Chollier, 
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Herrmann et al. 2012), SIOMICS identified more known cofactor motifs in ChIP-seq datasets and the 

same or fewer false motifs in random datasets and had a comparable or better time efficiency. 

 

Although SIOMICS has good running efficiency and performance, it can only predict length-specific 

motifs, which is one of its major disadvantages. In order to overcome this disadvantage, we proposed 

an improved version of SIOMICS, we call it SIOMICS-Extension(Ding, Dhillon et al. 2015). The 

major improvement of the SIOMICS tool in the extended version is its ability to output motifs of 

different lengths. In practice, the common motif length varies from 5 to 15 base pairs (Wingender, 

Dietze et al. 1996). The initial SIOMICS tools may thus cause certain problems by requiring the 

predicted motif length be always w base pairs long. To address this issue, SIOMICS_Extension first 

considers extending these motifs from the left side, or the right side, or both sides.  

 

After extending the motifs, there may be some motifs left unchanged. For these motifs, 

SIOMICS_Extension considers reducing their motif lengths. SIOMICS_Extension compares these 

unchanged motifs to see whether two unchanged motifs are similar. Moreover, SIOMICS_Extension 

checks whether these similar motifs form motif modules with a common group of other motifs. If 

both criteria are satisfied, SIOMICS_Extension considers whether to merge these similar motifs and 

represent them with the similar portion.  

1.2 Studies of Gene Regulation at Post-Transcriptional Level 

Post-transcriptional regulation means the control of gene expression at the RNA level, which is 

between the transcription and the translation of a gene. The majority of gene regulation studies to 

date was mainly focused on transcriptional regulation mechanism, but the importance of post-

transcriptional gene expression in eukaryotes is becoming increasingly clear. MicroRNAs (miRNAs) 
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play a critical role in gene regulation (Bartel 2004, Bartel 2009) and it’s reported that microRNAs 

appear to post-transcriptionally regulate the expression of more than 60% of protein coding genes of 

human genome (Friedman, Farh et al. 2009).  In this dissertation, we focused our study of post-

transcriptional regulation on microRNAs. MiRNA is a family of small non-coding RNAs of ~22 

nucleotides long. They can bind mRNAs at 5’ untranslated regions (UTRs), coding sequences 

(CDSs), and 3’ UTRs. The binding is traditionally thought to be through the base-pairing of the seed 

regions in miRNAs with the partially complementary sequences in the target mRNAs (Bartel 2009). 

The seed region refers to the 5’ end miRNAs from the position 2 to the position 7 (Lewis, Shih et al. 

2003, Lewis, Burge et al. 2005). Depending on the pairing quality, the miRNA target sites are 

classified into two categories: canonical sites and non-canonical sites. The former is the target sites 

that are perfect complementary to the seed regions, while the latter is the target sites that have 

imperfect seed complementarity (G:U wobbles or mismatches). With the advance of biotechnology, 

currently, it is commonly accepted that base-pairing can involve both seed regions and outside of the 

seed regions (Hafner, Landthaler et al. 2010, Helwak, Kudla et al. 2013, Wang 2014). That is, other 

types of target sites exist in addition to the canonical and non-canonical target sites. We define target 

sites other than the canonical sites as unconventional sites. Regardless of the types of target sites, the 

binding of miRNAs to their target mRNAs during diverse cellular processes can degrade the target 

mRNAs, and/or repress the translation of the target mRNAs to proteins (Bartel 2004, Bartel 2009, 

Wang, Li et al. 2011). Due to such a pivotal role in gene regulation, it is critical to study miRNAs 

and their target sites. 

 

MiRNAs often form modules to regulate their target mRNAs (Doench and Sharp 2004, Vella, Choi 

et al. 2004, Krek, Grun et al. 2005, Saetrom, Heale et al. 2007, Wu, Huang et al. 2010). Informally, a 
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miRNA module is a group of miRNAs that bind a common set of mRNAs under the same 

experimental condition. Several studies related to miRNA modules have been published in the past 

decade (Krek, Grun et al. 2005, Saetrom, Heale et al. 2007, Wu, Huang et al. 2010, Jayaswal, 

Lutherborrow et al. 2011, Zhang, Li et al. 2011, Bryan, Terrile et al. 2013). Among them, Krek et al. 

considered the co-occurrence of multiple miRNA target sites in 3’ UTRs to score mRNAs as  

potential miRNA targets and predicted miRNA targets (Krek, Grun et al. 2005). Saetrom et al. 

investigated the preferred distances of target sites of the same miRNAs in 3’ UTRs (Saetrom, Heale 

et al. 2007). Other studies predicted miRNA modules by harnessing the predicted miRNA target sites 

in 3’ UTRs and the co-expression relationship of target mRNAs of the same miRNAs (Jayaswal, 

Lutherborrow et al. 2011, Zhang, Li et al. 2011, Bryan, Terrile et al. 2013). 

 

Despite the significant predictions and discoveries from these studies, our understanding of miRNA 

modules is still rudimentary. To our knowledge, all published studies on miRNA modules so far are 

based on the computationally predicted miRNA target sites in 3’ UTRs. However, 3’ UTRs only 

account for a small portion of the potential miRNA target site residing regions (Hafner, Landthaler et 

al. 2010, Helwak, Kudla et al. 2013). Moreover, even the most well-known target site prediction 

methods currently produce a significant fraction of false positive predictions (Witkos, Koscianska et 

al. 2011). In addition, in defining miRNA modules, rarely does a study require the higher down-

regulation of target gene expression by miRNA modules than that by subsets of miRNAs contained 

in the modules (Wu, Huang et al. 2010). Therefore, although we have gained basic insight into 

miRNA modules from previous studies, our understanding of miRNA modules may be biased and 

limited. More importantly, several key questions have not been addressed in previous studies. For 

instance, is there any difference between the target sites bound by miRNA modules and those bound 
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by individual miRNAs? What is the preferred distance range of the adjacent target sites of different 

miRNAs in a miRNA module? And so on. Many aspects of miRNA modules and their target sites 

remain elusive.   

 

To address these questions, we employed experimentally determined instead of computationally 

predicted target sites to study miRNA modules. We used the recently generated high-throughput data 

from the crosslinking, ligation, and sequencing of hybrids (CLASH) (Helwak, Kudla et al. 2013). 

The CLASH data provides an unprecedented opportunity to study miRNA modules because it 

provides information about which miRNAs bind which short mRNA regions under a given 

experimental condition. 

 

Besides, we also developed a new approach for miRNA target site prediction called TarPmiR (Target 

Prediction for miRNAs). TarPmiR applies a random-forest-based approach to integrate six 

conventional features and seven new features to predict miRNA target sites. These features were 

learned from the only CLASH dataset in mammal that is made publically available by Helwak, et al. 

(Helwak, Kudla et al. 2013). By cross-validation, we showed that TarPmiR had an average recall of 

0.543 and an average precision of 0.181. Tested on three independent datasets, including two human 

PAR-CLIP datasets and one mouse HITS-CLIP dataset, we demonstrated that TarPmiR identified 

more than 74.2 % of known miRNA target sites in each dataset. Compared with three existing 

approaches, we found that TarPmiR is superior to existing approaches, in terms of both higher recall 

and higher precision. The TarPmiR method is implemented in a python package, which is freely 

available at http://hulab.ucf.edu/research/projects/miRNA/TarPmiR/. 
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1.3 Overview of the Dissertation 

In summary, we studied the gene regulation at both transcriptional and post-transcriptional levels.  

Transcription Factors (TFs) play a very important role in transcriptional gene regulation by directly 

binding the DNA sequence, yet the TF binding mechanism is not completely clear. In this work, we 

proposed a sets of computational methods, which can systematically predict the TF and cofactor 

binding on a whole genome scale. What’s more importantly, those methods can be applied to the 

large scale TF ChIP-Seq data, which provides much better resolution for finding TF binding sites.  

MicroRNAs (miRNAs) play a critical role in Post-transcriptional gene regulation. It’s reported that 

microRNAs appear to post-transcriptionally regulate the expression of more than 60% of protein-

coding genes of human genome (Friedman, Farh et al. 2009).  Thereby we focused our study of post-

transcriptional regulation on microRNAs and we proposed several computational methods on 

microRNA binding prediction.  The remaining of this dissertation will be organized as follows:  

(1) In Chapter 2, I will present our studies on transcriptional regulation:  we proposed 3 methods 

on predicting TF binding: MERCED, SIOMICS, and SIOMICS2.  

(2) In Chapter 3, I will present our studies on post-transcriptional regulation.  We proposed 2 

computational frameworks on miRNA binding target: miRModule and TarPmiR. We also 

analyzed the miRNA binding features, especially those miRNAs in modules. 

(3) In Chapter 4, I will conclude the gene regulation studies in this dissertation and a few on-

going projects will be introduced. It’s expected that they can further improve the performance 

of TF binding and miRNA target prediction, which will also advance our understanding of 

gene regulation mechanisms.  
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CHAPTER 2: TRANSCRIPTIONAL REGULATION –TF BINDING 

2.1 MERCED: Systematic Discovery of Cis-Regulatory Elements in Chlamydomonas reinhardtii 

Genome Using Comparative Genomics 

2.1.1 Background 

Chlamydomonas reinhardtii (C. reinhardtii) is a member of single celled green algae that diverged 

from the streptophytes approximately one billion years ago. Being comprised of multiple 

mitochondria, two anterior flagella and a chloroplast, C. reinhardtii serves as an outstanding 

microalgae model organism, especially for analyzing eukaryotic chloroplast biology, action of 

flagella and basal bodies and many biological pathways such as circadian rhythms, cell cycle control 

and plant respiration etc. (Rochaix 2004, Wemmer and Marshall 2004, Bisova, Krylov et al. 2005, 

Cardol, Gonzalez-Halphen et al. 2005, Mittag, Kiaulehn et al. 2005). As a photosynthetic microalgae 

species, C. reinhardtii has also shown its potential in biofuel generation (Grossman, Harris et al. 

2003, Beckmann, Lehr et al. 2009, Langner, Jakob et al. 2009, Nguyen, Choi et al. 2009). However, 

since cellular processes in general are coordinated by transcriptional regulation of functionally 

related genes, further exploitation of C. reinhardtii as a model system to elucidate various molecular 

mechanisms requires systematic study of gene regulation (Li, Han et al. , Sun, Liu et al. , Bohne and 

Linden 2002). Genome-scale study of gene regulation in C. reinhardtii is currently in the very early 

stages. For example, Cis-regulatory elements (CREs) are genomic DNA segments that play 

important roles in gene regulation by modulating gene activities through their interaction with RNAs 

or regulatory proteins called Transcription Factors (TFs). The discovery and functional annotation of 

CREs is thus one of the immediate next steps toward global understanding of gene regulatory 

mechanisms in C. reinhardtii (Wang, Haberer et al. 2009). However, there are less than a dozen 

CREs annotated in C. reinhardtii as of yet, even though many TFs have been collected and deposited 
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in a number of databases (Wingender, Dietze et al. 1996, Higo, Ugawa et al. 1999, Rombauts, Dehais 

et al. 1999, Portales-Casamar, Thongjuea et al. 2010). The correspondences between CREs and 

regulatory proteins remain largely unknown.  

 

Unprecedented large-scale microalgae genomic data has now become available, which makes it 

possible to perform the genome-wide identification of CREs in C. reinhardtii. For example, the 

complete nuclear genome sequence of C. reinhardtii was published in 2007, and around 15, 000 

protein-coding genes were predicted (Merchant, Prochnik et al. 2007). Additionally, another green 

algal species Volvox carteri that is close to C. reinhardtii in evolution has been recently sequenced, 

which provides a great opportunity to study the C. reinhardtii genome by comparative genomics 

(Prochnik, Umen et al. 2010). In addition to the genomic sequence data, there is a large supply of 

expression data available as cDNA libraries, expressed sequence tags (ESTs), microarray expression 

measurements, and RNA sequencing reads (Eberhard, Jain et al. 2006, Miller, Wu et al. 2010, 

Castruita, Casero et al. 2011, Fischer, Ledford et al. 2012, Urzica, Adler et al. 2012). Integrative 

analysis of DNA sequence data and mRNA expression measurements have been shown successful in 

gene regulatory network studies at the whole-genome level (Segal, Shapira et al. 2003, Wang and 

Stormo 2003).  

 

In this paper, we present the first genome-wide computational discovery of CREs in C. reinhardtii 

using a comparative-genomics-based approach named MERCED, short for “Modeling Evolution 

Rate across species for Cis-regulatory Element Discovery”. MERCED searches for CREs through 

uncovering CRE motifs, i.e., common patterns of CREs that can be bound by the same TFs. By 

simultaneously considering multiple properties of motifs including overrepresentation, co-occurrence 
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and evolutionary conservation, MERCED is able to reduce false positive predictions significantly. 

Most importantly, considering species-divergence-time when evaluating evolutionary conservation 

leads to better incorporation of the evolutionary-information of individual DNA segments. By 

comparatively integrating V. carteri and C. reinhardtii genome information, MERCED discovered 

66530 CREs, corresponding to 317 CRE motifs. 164 (51.7%) of these CRE motifs tend to frequently 

co-occur in regulatory sequences flanking the transcription start sites. The existence of many such 

frequently co-occurring motifs, named as motif combinations, indicates the potential of these motifs 

to coordinately regulate target genes. Many of these identified motifs and motif combinations are 

consistent with experimentally verified motifs from public databases. Further integration of gene 

transcriptional profiles and gene-annotation data resources also provide multiple functional evidences 

supporting the discovery. The motif predictions generated from this study and the accompanying 

software tool MERCED have been deposited into our web-accessible database, which will be useful 

to experimental biologists interested in genes regulation in algae species. 

2.1.2 Materials and Methods  

2.1.2.1 Protein, DNA Sequences and Orthologous Gene Pairs in C. reinhardtii and V. carteri 

We defined promoter sequence of a gene as the upstream 1000 base pair (1kbp) sequence relative to 

the translational start site of this gene. All genes and their promoter sequences in C. reinhardtii and 

V. carteri were downloaded from the Phytozome database (http://www.phytozome.net/). The JGI 

v4.3 and the JGI v1.0 release were used for the two species, respectively. In total, we obtained 17116 

genes in C. reinhardtii and 14546 genes in V. carteri. Repeats in the upstream sequences were then 

masked using RepeatMasker (http://www.repeatmasker.org/). We also obtained all proteins 

sequences in the two species from the Phytozome database. The PSI-BLAST program (Altschul, 

http://www.phytozome.net/
http://www.repeatmasker.org/
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Madden et al. 1997) was then applied to these sequences to find the reciprocal best hits between 

proteins in the two species. In total, we defined 8742 orthologous pairs based on reciprocal best hits 

(E-value ≤ 1E-10) in C. reinhardtii and V. carteri. 

2.1.2.2 Gene Expression Data and Co-expressed Clusters 

We selected four gene expression datasets in C. reinhardtii from the Gene Expression Omnibus 

(GEO) database requiring each of them contains at least fifteen samples (Edgar, Domrachev et al. 

2002). The datasets are GSE20860, GSE20861, GSE30646 and GSE30648. We then calculated the 

pair-wise Pearson’s correlation for every pair of genes in each dataset. These gene correlations were 

then used to obtain co-expressed gene sets by applying a hierarchical clustering algorithm with the 

average linkage (Sokal and Michener 1985). In total, we obtained 437 gene sets, each of which 

contains more than three genes and has gene correlation no less than 0.6.  

2.1.2.3 Model the Neutral Evolution Rate of Nucleotide Substitution  

We constructed a substitution matrix to describe the neutral evolution of nucleotides between C. 

reinhardtii and V. carteri. The construction is based on the fourfold degenerate sites in orthologous 

proteins in the two algae species. We first aligned each pair of orthologous proteins by using the 

widely-used protein-alignment software MUSCLE (Edgar 2004). We then obtained all aligned 

fourfold degenerate sites with the same amino acid in the alignments. A fourfold degenerate site is a 

position in a codon where all nucleotide substitutions at this site are synonymous. For each of the 

positions containing fourfold degenerate sites, we obtained their corresponding nucleotides and 

counted how many times a given type of nucleotides in C. reinhardtii corresponds to another given 

type of nucleotides in V. carteri. In the end, we obtained a four by four substitution matrix S 

involving the four types of nucleotides A, C, G and T, as illustrated in Figure 2A.  
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2.1.2.4 Discovery of Conserved k-mers in C. reinhardtii 

To identify k-mers (k-base-pair-long DNA segment) in C. reinhardtii that are conserved between C. 

reinhardtii and V. carteri, we first defined conserved-to-be (CTB) k-mer pairs. A CTB k-mer pair 

contains two k-mers, one from C. reinhardtii and the other from V. carteri, which are likely to be 

conserved between these two species. To find out all CTB k-mer pairs in C. reinhardtii, we obtained 

the expected number of mismatches m between any k-mer μ in C. reinhardtii and any k-mer in μ’s 

corresponding orthologous sequence in V. carteri. Here, m is calculated as  


T

Ai iii Spkm )1( , 

where, ip is the probability that the i-th type of nucleotides in C. reinhardtii and iiS  is the probability 

that the i-th type of nucleotides in C. reinhardtii correspond to the i-th type of nucleotides in V. 

carteri. We defined two k-mers as a CTB k-mer pair if the observed mismatch between them is 

smaller than m. With all the CTB k-mer pairs in the two species defined, we then selected k-mers 

from these CTB k-mer pairs as conserved k-mers by their statistical significance (p-value) in terms of 

evolutionary conservation. To calculate the conservation p-value of a CTB k-mer pair that contains a 

specific k-mer, one needs to compare all the 4k different k-mers in V. carteri with this k-mer in C. 

reinhardtii. However, with the large number of k-mers in C. reinhardtii, direct enumerating all the 4k 

different k-mers in V. carteri is time-consuming. Therefore, we exploited the mathematics concept of 

generating function to calculate the p-value. The generating function is a representation of the 

probability mass function of a random variable. For a discrete random variable X, its generating 

function is defined as  


n

i

a

i
itptf

1
)( , where ii paX  )Pr(  and n is the number of different values 

X can take. For every k-mer μ in C. reinhardtii that has similar k-mers in μ’s corresponding 

orthologous sequence in V. carteri, say kaaa ...21 ,we can define a generating function of the k-mer in 

C. reinhardtii, as  


k

i

i

score

ik tcaaatf
4

121 )...,( , where ic  is the probability of the i-th k-mer occurs 
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in the upstream 1000 base pair sequences in V. carteri, and iscore  is the substitution score of the k-

mer kaaa ...21  in C. reinhardtii by the i-th k-mer in V. carteri. The generating function can be 

efficiently computed as in previous studies (Staden 1989, Huang, Kao et al. 2004). The statistical 

significance for the evolutionary conservation between kaaa ...21  and one of its similar k-mer in V. 

carteri can then be calculated as p-value = alphascore i
i

c , where alpha is the substitution score of this 

k-mer pair. We claimed a k-mer pair as conserved if its Bonferroni corrected p-value ≤ 0.05.  

2.1.2.5 Prediction of Motifs and Motif Combinations 

To predict CRE motifs from the conserved k-mers identified in C. reinhardtii, we first applied the 

hierarchical clustering algorithm (average linkage) (Sokal and Michener 1985) to cluster the 

conserved k-mers. Since conserved k-mers forming a cluster are likely to have the same underlying 

pattern and thus correspond to the same motif, we predicted a motif for each cluster. Each predicted 

motif is represented by a PWM (Stormo and Hartzell 1989). In the end, we obtained 66530 

conserved CREs and 317 underlying 8-mer motifs. With the predicted motifs, we further identified 

motif combinations by finding motifs frequently co-occurring in a large number of regulatory 

sequences in C. reinhardtii using our previously developed method (Cai, Hou et al. 2010). The 

statistical significance of each group of frequently co-occurring motifs was determined by Poisson 

clumping heuristic (Cai, Hou et al. 2010). The groups of motifs with sufficient significance (FDR < 

0.05) were predicted as motif combinations.  

2.1.2.6 Function Study of the Predicted Motif Combinations  

To see whether motif combinations are associated with specific functions, we investigated the 

overlap between the target genes of co-occurring motifs and functional gene sets. The functional 

gene sets are defined as sets of genes with specific Gene Ontology (GO) function annotation 
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(Ashburner, Ball et al. 2000), or set of genes with correlated transcription expression since correlated 

expression often implicates similar function (Altman and Raychaudhuri 2001, Ideker, Thorsson et al. 

2001). The statistical significance of any overlap between target genes of a motif combination and a 

given functional gene set is calculated as follows. Let S be the set of all the N genes in a genome, S1 

be a predicted target gene set of a motif combination and S2 be a given functional gene set, and 

assume the number of genes in the intersection of the three sets S, S1, and S2 is n, M and m 

respectively. Then the p-value of the overlap of the set S1 and the set S2 can be estimated based on the 

hyper-geometric test:  




),min(

),(

),(),(Mn

mi nNC

inMNCiMC
pvalue , where C(x,y) is the combinatorial 

number of choosing y items out of x items. From such obtained p-values, we then calculate q-values 

based on the Q-Value software to estimate the statistical significance of the overlap (Storey and 

Tibshirani 2003). All the motif combinations with sufficient statistical significance (FDR < 0.05) in 

terms of overlapping with known functional gene sets are reported as functional motif combinations.  
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2.1.3 Results 

2.1.3.1 Genome-scale discovery of CRE motifs in C. reinhardtii 

Existing CRE-motif-finding methods often assumes that a bona fide CRE motif must be 

overrepresented in the input sequences, i.e., the overrepresentation property of motifs (Stormo and 

Hartzell 1989, Lawrence, Altschul et al. 1993, Bailey and Elkan 1994). However, because of the 

degenerative nature of motifs, overrepresentation alone is often not enough to distinguish true motifs 

from random patterns formed by DNA segments (Blanchette and Tompa 2002, Wang and Stormo 

2003). To improve sensitivity and specificity of the CRE motif discovery, dozens of motif-finding 

methods have been developed to exploit the co-occurrence property of motifs, i.e., multiple CREs are 

often co-occurring in short regions (Frith, Hansen et al. 2001, Zhou and Wong 2004, Gupta and Liu 

2005, Hu, Hu et al. 2008). Alternative methods require evolutionary conservation of motifs to further 

filter false positive discoveries (Loots, Locksley et al. 2000, Blanchette and Tompa 2002, Wang and 

Stormo 2003, Liu, Liu et al. 2004, Sinha, Blanchette et al. 2004, Elemento and Tavazoie 2005, Li 

and Wong 2005, Li, Zhong et al. 2005). The rationale is that functional motifs should be evolutionary 

conserved across multiple species (Loots, Locksley et al. 2000), Considering evolutionary 

conservation as an additional criterion indeed has been shown effective in identifying bona-fide CRE 

motifs, whereas how to better quantify the evolutionary conservation for CRE motif finding is worth 

further investigation. For example, the current common practice to quantify the evolutionary 

conservation of a potential CRE motif is to score the multiple sequence alignment (MSA) of its 

corresponding DNA segments in orthologous sequences. For this quantification strategy, there can be 

at least two issues. One is that short DNA segments are not always well-aligned with its 
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corresponding segments in MSA, and consequently, a plethora of not-well-aligned CREs can be 

missed (Li and Wong 2005). The other issue is that even for DNA-segments that can be aligned well 

with their corresponding segments, current strategies to score conservation are often debatable. For 

example, one commonly used strategy is to compare a CRE candidate with its corresponding DNA 

segments in different orthologous sequences, if the number of mismatches is smaller than a specified 

cutoff, then the CRE candidate is defined as conserved. Since species divergence time is not 

considered, strategies like this may result in inaccurate assessment for conservation (Li, Zhong et al. 

2005).  

 

We therefore developed the MERCED algorithm to discover conserved CREs between microalgae 

species C. reinhardtii and V. carteri. Different from available methods, MERCED defines conserved 

DNA segments by carefully modeling the species-divergence-time. The algorithm consists of the 

following steps (see Methods and Materials for details): 1) define orthologous gene pairs in C. 

reinhardtii and V. carteri as reciprocal best hits obtained by applying PSI-BLAST to the protein 

sequences in the two species (Altschul, Madden et al. 1997); 2) construct a nucleotide substitution 

matrix to model the neutral evolution rate of nucleotide substitution between C. reinhardtii and V. 

carteri based on fourfold degenerate sites in proteins of orthologous genes (Li, Wu et al. 1985); 3) 

define conserved k-mers in regulatory sequences of orthologous genes based on their statistical 

significance estimated from the nucleotide substitution matrix constructed in step (2). Generating 

functions are applied here to improve the efficiency for significance calculation(Huang, Kao et al. 

2004); 4) group conserved k-mers using hierarchical clustering with average linkage (Sokal and 

Michener 1985); and 5) define CRE motifs based on patterns of k-mers in the same clusters obtained 
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in step (4), and define k-mers underlying these patterns as the CRE instances of the corresponding 

motif. See Figure 2-1 for the pipeline of our method. 

 

Figure 2-1 Identified CRE motifs from conserved k-mers 

The MERCED algorithm has several advantages over MSA-based methods. One of them is that 

MERCED is more practical for conservation estimation of short DNA segments compared with 

MSA-based methods. This is because the latter will not work for the not-well-aligned DNA 

segments, whereas DNA segments, especially the short ones, are often hard to be aligned well using 

existing MSA algorithms. Additionally, in contrast to MSA-based methods, MERCED considers 

species-divergent-time rather than merely the number of mismatched nucleotides between DNA 

segments in aligned orthologous sequences. As a result, we can obtain very accurate estimation of 

evolutionary conservation even for very short DNA segments. This is because the conservation 

between two DNA segments from two orthologous sequences depends on not only the number of 

mismatches, but also the evolutionary distance between them, whereas the absolute value of 

mismatch number is not always proportional to the evolutionary distance [36]. In fact, highly similar 

sequences between closely related species, e.g. human and mice, can be present either as a result of 

active conservation due to functional constraints or as a result of shared ancestry due to insufficient 
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divergence time (Frazer, Sheehan et al. 2001). For example, as illustrated in Figure 2-2B, one 8-mer 

in a C. reinhardtii sequence with a zero mismatch compared with a similar 8-mer in the orthologous 

V. carteri sequence may have a p-value of 0.011 according to our model and thus will not be 

considered as a conserved 8-mer pair. On the contrary, another 8-mers with two mismatches 

compared with its similar 8-mer in the same orthologous sequences will be considered as conserved 

because the much smaller p-value, 2.84E-05. One additional beneficial side effect of the MERCED is 

that when comparing potential instances of a CRE motif in different species for CRE conservation 

quantification, MERCED avoids setting an arbitrary cutoff for the number of mismatches. 

 

Figure 2-2 A. The substitution matrix that models the neutral evolution rates of nucleotides. B. Three 

8-mer pairs as examples to illustrate the smaller conservation P values are not always corresponding 

to smaller mismatch numbers 
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2.1.3.2 The predicted motifs are consistent with literature and experimentally verified ones 

Applying MERCED to the upstream regulatory sequences of 8741 groups of orthologous genes in C. 

reinhardtii and V. carteri, we predicted 317 conserved CRE motifs (False Discovery Rate (FDR) < 

0.05 based on permutation) and 66530 corresponding CREs (k = 8). We compared the predicted 

motifs with the known motifs in the PLACE database (http://www.dna.affrc.go.jp/PLACE/) (Higo, 

Ugawa et al. 1999) based on the STAMP software tool (Mahony and Benos 2007). PLACE has so far 

compiled 469 experimentally-verified motifs in plants from literature (Higo, Ugawa et al. 1999), and 

the STAMP tool is commonly used to assess motif similarities with statistical significance 

estimation. We found that 195 (62.5%) of the 317 predicted motifs are similar to the PLACE motifs 

with the STAMP E-value cutoff as 1E-5, which was used in previous studies to define similar motifs 

(Fauteux, Blanchette et al. 2008, Reed, Charos et al. 2008). Take the predicted motif M75 for 

example, the consensus of its reverse complement is GNCGGCCA, which is similar to the PLACE 

motif GRAZMRAB17-GGGCGGCCAGTG (E-value = 4.18E-11). As another example, the 

predicted motif M78 is similar to the known motif LRENPCABE-ACGTGGCA with the consensus 

of its reverse complement as CNTGGCA (E-value = 3.5E-11). We also found that 129 (27.5%) 

PLACE motifs are similar to the predicted 317 motifs and multiple predicted motifs may be similar 

to the same PLACE motif. For instance, the predicted motifs M4 and M5 have the motif consensus 

GCAGCTGC and YCAGCAGC, respectively, which are similar to the same known PLACE motif 

ANAERO2CONSENSUS with the consensus AGCAGC. In the meantime, many of these 

experimentally verified motifs in PLACE database are not similar to the predicted motifs. One 

possible explanation is that rather than from the algae, the majority of the PLACE motifs are from 

land plant species, especially Arabidopsis (Higo, Ugawa et al. 1999). Therefore, the difference 

http://www.dna.affrc.go.jp/PLACE/
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between the PLACE motifs and the predicted motifs might suggest the evolved regulatory 

mechanism during the distant evolution time between the algae and the land plants.  

 

In addition to the comparisons with experimentally verified motifs, we also found literature supports 

for the predicted motifs. For instance, TGACGCCA is an experimentally verified CRE in the C. 

reinhardtii gene GPX5, which has been shown relevant to the oxidative stress response in C. 

reinhardtii (Fischer, Dayer et al. 2009). This CRE is similar to the consensus of the predicted motif 

M44, T[CG]C[ACGT]GCCA, where nucleotides included in the parentheses are those frequently 

occurring at the specified positions. Moreover, we found that the target genes of the motif M44 

significantly share the following functions based on gene ontology enrichment analysis (Boyle, 

Weng et al. 2004): response to stress (GO:0006950, corrected p-value: 7.34E-08), which is consistent 

with the function of GPX5. Besides, we have also found the predicted motif M44 is similar to 

PLACE motif GRAZMRAB28 (E-value = 1.78E-08). GRAZMRAB28 is found in the promoters of 

abscisic acid (ABA) responsive genes (Busk and Pages 1998), which also supports the functionality 

of M44. 

2.1.3.3 The predicted motif combinations are consistent with experimentally verified ones  

In high eukaryotes, multiple TFs often coordinately regulate their target genes, by binding to their 

respective CREs that co-occur in the short regions of a few hundred base pairs (Yuh, Bolouri et al. 

1998, Blanchette, Bataille et al. 2006, Ding, Hu et al. 2012). Many co-occurring CREs in plants have 

also been identified by experimental studies. These CREs can be associated with a pair of interacting 

TFs or individual TFs with multiple DNA binding domains (Singh 1998). To see whether CREs of 

the predicted motifs significantly co-occur in the regulatory sequences of C. reinhardtii, we applied 

our previously developed method (Cai, Hou et al. 2010) to identify motif combinations containing 



www.manaraa.com

22 

 

multiple motifs whose instances frequently co-occur in the regulatory sequences. In total, we 

predicted 92694 motif combinations based on the identified CRE motifs (k = 8), each of which 

consists of 2 to 6 motifs. The percentage of motif combinations comprised of 2 to 6 motifs is 0.08%, 

40.40%, 47.44%, 11.75%, and 0.33%, respectively. As a way to evaluate our prediction, we 

compared the predicted motif combinations with seven well-known co-occurring motif pairs (Table 

2.1) (Singh 1998, Steffens, Galuschka et al. 2005). We found five out of the seven known motif 

combinations were subsets of our predicted combinations. In general, a known combination can be a 

subset of multiple predicted combinations. For instance, one of the known motif combinations is 

comprised of two motifs CAACA and CACCTG that can be bound by the TF RAV1 at the AP2-like 

N-terminal domain and the B3-like C-terminal domain, respectively. 378 predicted motif 

combinations have been found to include these two motifs. With different additional motifs, these 

different motif combinations containing the same known combination can regulate different sets of 

target genes. For instance, two predicted motif combinations, MOD3428 and MOD3431, both 

include the above RAV1-binding motif combination of M164 and M27 (Table 2.1). MOD3428 

includes one additional motif M11 and MOD3431 includes one additional motif M21. It turns out 

MOD3428 regulates 204 predicted target genes and MOD3431 regulates 230 predicted target genes, 

and only 104 of these target genes are shared by both motif combinations, suggesting the additional 

motifs M11 and M21 play extra roles in these two motif combinations.  

 

Further investigation on the motifs co-occurring with known motif combinations in a predicted motif 

combination showed that the function of additional motifs relate to that of known motifs in the same 

combinations. For instance, MOD5159 is a combination of three motifs M13, M167 and M0. The 

first two motifs comprise the known combination bHLH-MYB and correspond to the binding sites of 
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TFs with bHLH and MYB protein domains respectively. Both bHLH and MYB-containing TFs have 

been shown involved in ABA signaling (Abe, Urao et al. 2003). The additional motif M0 is also 

implicated in ABA signaling because of its similarity to the known PLACE motif AGCBOXNPGLB, 

which is known to be the binding sequence of stress signal-response factors ERFs (Fujimoto, Ohta et 

al. 2000). Therefore, the additional motif M0 is also related ABA signaling and its function is 

consistent with that of the known combination in terms of ABA signaling. In addition, we found that 

the target genes of this motif combination MOD5159 significantly share the following functional 

annotation terms: response to stress (GO:0006950, corrected p-value: 1E-4), which further support 

the coherent function of the three motifs and that of the motif combination. 

2.1.3.4 The predicted motif combinations are functionally important 

We also performed function study of the predicted motif combinations by investigating the overlap 

between their target genes and sets of genes with the same GO annotations (see Methods and 

Materials). Significant overlapping with function-annotated gene sets indicates the function 

coherence of a motif combination in terms of gene co-regulation (Blanchette, Bataille et al. 2006). In 

other words, motifs contained in such motif combinations are likely to work together to regulate their 

target genes. We found that target genes of 87.5% of the predicted motif combinations in C. 

reinhardtii significantly share the same functions (FDR < 0.05) (Materials and Methods). The 

following two examples illustrated the functional relevance of predicted motif combinations.  

 

Example 1: The motif combination MOD22676 contains four predicted motifs, M39, M4, M25, and 

M15. All of these four motifs are similar to known motifs that have documented biological-relevance 

to plant stress response. For example, M4 is similar to the PLACE motif AGCBOXNPGLB-

AGCCGCC, which is the binding sequence of stress signal-response factors ERFs (Fujimoto, Ohta et 
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al. 2000). M39 is similar to the PLACE motif GRAZMRAB28-CATGCCGCC, which was found in 

the promoter of ABA responsive gene that also play a critical role in response of environmental 

stress (Busk and Pages 1997). M15 is similar to the PLACE motif ABREMOTIFIIIOSRAB16B-

GCCGCGTGGC, which is known to be required for ABA responsiveness as well (Ono, Izawa et al. 

1996). Finally, M25 is similar to ABRE3OSRAB1616-GTACGTGGCGC, which is the known CRE 

motif called ABA responsive element (ABRE) found in rice and related to the biotic and abiotic 

stresses (Skriver, Olsen et al. 1991). In addition, we also found that the target genes of MOD22676 

significantly share the following GO annotation terms: response to stress (GO:0006950, corrected p-

value: 4.65E-3), response to oxidative stress (GO:0006979, corrected p-value: 4.85E-3), response to 

stimulus (GO:0050896, corrected p-value: 0.015), response to chemical stimulus (GO:0042221, 

corrected p-value: 0.033). These GO functional annotations agree well with the functions of the 

predicted motifs in this motif combination, supporting the functionality of this motif combination 

MOD22676. 

 

Example 2: The motif combination MOD9430 is comprised of three predicted motifs, M60, M63 

and M22. All the three motifs have similar known motifs that have been reported to involve in 

photoregulation. For example, M60 is similar to the PLACE motif BOXBPSAS1 that is found in 

light-regulated asymmetric leaves 1 gene (Fujimoto, Ohta et al. 2000), M63 is similar to the PLACE 

motif PE3ASPHYA3 with a role in photoregulation (Bruce and Quail 1990), and M22 is similar to 

the PLACE motif PREMOTIFNPCABE that is also related to photoregulation (Castresana, Garcia-

Luque et al. 1988). Additionally, we found that the target genes of MOD9430 significantly share the 

following GO terms: photosynthesis (GO:0015979, corrected p-value: 0.01). This GO term is 
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consistent with the functions of the predicted motifs in this motif combination and thus supports the 

functionality of the predicted motif and motif combination. 

 

In addition to the performed functional study using GO-annotated gene sets, we compared target 

genes of the 92694 motif combinations with genes that are co-expressed in C. reinhardtii. Since co-

expressed target genes are often co-regulated (Allocco, Kohane et al. 2004), the significant overlap of 

target genes of a motif combination with co-expressed gene sets supports the functionality of the 

predicted motifs and motif combinations as well (Methods and Materials). We found that target 

genes of 314 predicted motif combinations significantly overlap with at least one co-expressed gene 

set obtained from four microarray datasets (FDR < 0.05). Consistently, for 289 of the 314 (92.0%) 

motif combinations, their target genes significantly share the same functions, based on the above GO 

analysis. In addition, we found that the function of the predicted motifs is likely to be associated with 

the microarray experimental conditions. For instance, target genes of the motif combination 

MOD39131 are significantly co-expressed in the gene expression dataset GSE30648, measuring 

genetic response of C. reinhardtii under different oxidative and electrophilic stress conditions. 

Accordingly, a motif in this combination, M21, is similar to the known motif REGION1OSOSEM, 

which has been reported to be ABRE (Hattori, Terada et al. 1995) that plays a critical role in 

environmental stress response (Busk and Pages 1997). Besides, we also found the target genes of 

MOD39131 significantly share the GO term: response to stress (GO:0006950, corrected p-

value=0.016).  

2.1.3.5 Comparison with other methods 

There is no computational study for genome-wide CRE discovery in C. reinhardtii. The MERCED 

presented here integrates multiple properties of potential CREs as motif-finding criteria. Different 
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from existing motif-discovery methods applied in other species, the MERCED takes species-

divergence-time into account when incorporating sequence-conservation properties to define motifs. 

To see whether the consideration of species-divergence-time help the CRE motif prediction in C. 

reinhardtii, we compared the MERCED with three alternative approaches using different strategies 

for sequence conservation evaluation.  

 

The first alternative approach we compared with uses a mismatch number cutoff α to define 

conserved segments. We implemented this strategy by applying the same procedure of motif-finding 

as in our method except that we defined conserved k-mers using different mismatch number cutoff α 

here rather than the generating-function-based statistical significance p-value. In other words, for 

every pair of promoter sequences corresponding to the 8741 orthologous genes, we defined an k-mer 

μ in C. reinhardtii as conserved if there is one k-mer in μ’s corresponding orthologous sequence in V. 

carteri that has at most α mismatches comparing with this C. reinhardtii k-mer. We chose the top χ 

motifs based on the statistical significance, where χ is equal to the number of predicted motifs using 

MERCED (Liu, Brutlag et al. 2002). We then compared the predicted motifs with known motifs in 

the PLACE database using STAMP motif-comparison tool (Mahony and Benos 2007) with various 

E-value cutoffs. We found under each of the STAMP E-value cutoffs, more motifs similar to known 

motifs are predicted by our method than those predicted by the method based on various mismatch 

number cutoff α (Table 2.2). 

 

We next compared the MERCED with FastCompare, a more sophisticated approach (Elemento and 

Tavazoie 2007). FastCompare determines conserved segments directly from sequence comparison, 

which essentially enumerates all k-mer segments in two species and assesses their significance based 
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on the difference between their co-occurrence in orthologous sequences of the two species and their 

occurrence in individual species. We applied FastCompare to our regulatory sequences using the 

default parameters and only kept the same number of top predicted motifs as predicted using the 

MERCED for comparison. The results showed our method predicted slightly more motifs that are 

similar to known plant motifs than FastCompare for various STAMP E-value cutoffs. For instance, 

for the STAMP E-value cutoff 1E-5, we predicted 195 8-mer motifs that are similar to known motifs 

in the PLACE database, while FastCompare predicted 169 motifs that are similar to known PLACE 

motifs. This result indicates the benefit of incorporating species-divergence-time to determine 

sequence conservation for CRE motif finding in C. reinhardtii. 

  

We also compared the MERCED with another alternative strategy used in the PhyloNet (Wang and 

Stormo 2005). Like FastCompare, PhyloNet is one of the only a few methods that can de novo 

identify motifs on the genome scale. Briefly speaking, PhyloNet blasts conserved segments in a 

group of orthologous sequences against conserved segments in all other groups of orthologous 

sequences to discover motifs. The conserved segments in PhyloNet are defined by the wconsensus 

algorithm (Hertz and Stormo 1999), which uses the information content to measure the similarity of 

segments and motifs. After applying PhyloNet to our data and comparing the same number of top 

ranked motifs predicted by PhyloNet and the MERCED, we found that again, the MERCED 

predicted more motifs that are similar to known plant motifs than PhyloNet for various STAMP E-

value cutoffs (Table 2.2). Not considering the species-divergence-time in PhyloNet can be the partial 

cause since we observed that many highly similar segments in orthologous sequences that are defined 

as conserved in PhyloNet may not be conserved if we take species-divergence-time into account. For 

instance, GAGAAGAA is exactly shared by the regulatory sequences of two orthologous genes, 
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Cre07.g327250 in C. reinhardtii and Vocar2001129m in V. carteri. However, it only has a relatively 

large conservation p-value of 0.057 according to our model. It is thus not considered conserved with 

the FDR cutoff as 0.05. The overall comparisons shown in Table 2.2 demonstrated the necessity of 

considering species-divergence-time for CRE motif discovery. 

2.1.3.6 A public database for cis-regulatory information in C. reinhardtii 

Based on the results obtained in C. reinhardtii, we further developed a web-accessible database 

(http://hulab.ucf.edu/research/projects/Microalgae/sdcre/motifcomb.html), where researchers can 

download the MERCED software tool and all the currently predicted CRE motifs, CREs, and motif 

combinations in C. reinhardtii. The database supports a variety of queries for specific predicted 

motifs, motifs similar to PLACE or TRANSFAC motifs, predicted and/or known motif 

combinations, target genes of specific motifs and/or motif combinations, and so on. A query-based 

search is able to output the position-weight-matrix (PWM)-represented motifs and their target genes 

labeled with known expression profiles and GO annotation. The users can choose to view the query 

results in various formats.  

2.1.4 Discussion 

Genome-wide identification of CREs in C. reinhardtii genome is critical to further study gene 

regulation and molecular functions. We thus performed the first large-scale CRE prediction in C. 

reinhardtii. Different from available CRE prediction methods, our approach considers the species-

divergence-time and the nucleotide content rather than depends on MSA and mismatch-number-

counting to determine whether DNA segments are conserved CREs and motifs. According to 

sequence permutation test, the developed method has very low false discovery rate. Compared with 

alignment and mismatch-number-counting-based approaches, the developed method is more efficient 
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in filtering divergent segments while keeping conserved segments that have quite a few mismatches 

compared with their counterpart segments. In total, we have discovered 66530 CREs corresponding 

to 317 CRE motifs in C. reinhardtii that are conserved in green algae V. carteri. We found that 

62.5% of the predicted 317 motifs are similar to known PLACE motifs and 27.5% of known PLACE 

motifs are included in our prediction. In addition, we discovered that the predicted motifs form 

92694 statistically significant motif combinations in C. reinhardtii. These statistically significant 

motif combinations are evaluated and supported by known motif combinations, GO enrichment 

analysis, and gene expression analysis. The large number of CRE motifs and combinations 

discovered in this study will further facilitate algae research for various applications.  

 

In addition to the genome-wide CRE discovery in C. reinhardtii, further analysis of the predicted 

CREs in C. reinhardtii implies that the transcriptional regulation mechanisms may be significantly 

different between the green algae and the land plant species. We found that two out of the seven well 

known motif combinations shared by land plant species are not included in our predicted motif 

combinations. The missing of the well known motif combinations in land plant species suggests that 

the green algae may have their specific regulatory mechanisms. In fact, whereas genes encoding 

MADS domains are widespread in land plant genomes [86, 87], there are only two predicted TFs 

with MADS domains in C. reinhardtii (Perez-Rodriguez, Riano-Pachon et al. 2009). This can also be 

a possible explanation for the lack of motif combinations that contain the well known MADS-MADS 

motif combinations. Interestingly, the comparisons of the predicted motifs with experimentally-

verified known motifs also suggest C. reinhardtii may have both plant-like and animal-like motifs. 

For instance, the predicted motif M3 is similar to several known motifs related to photosynthesis, 

such as PE3ASPHYA3 (Bruce, Deng et al. 1991). In the mean time, we found that some predicted 
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motifs tend to have animal-like functions related to flagellum. For instance, The predicted motif 

M10, not similar to any known PLACE motif, was found in 76 out of 263 (29%) motif combinations 

whose target genes contain IFT88 (Cre.07.gee5750), which is known to be related to flagellum 

function (Lucker, Miller et al. 2010). This indicates that M10 may be a novel motif that relates to 

flagellum function. 

 

Because the precise definition of regulatory sequences is unknown, the regulatory sequences in the 

current study were restricted to the upstream 1kbp long sequences (Vandepoele, Casneuf et al. 2006, 

Ma and Bohnert 2007). However, the CREs can be anywhere in the upstream sequences. We 

compared the results with those obtained from shortened upstream sequences (800bp) and those from 

extended upstream sequences (1200bp). We made additional predictions from the shortened/extended 

regions, whereas more than 83.5% predicted motifs are shared for the three different upstream region 

definitions. Additionally, we used 8-mers motifs to illustrate the MERCED algorithm considering 

that the most dominant length of motifs in the TRANSFAC database is eight (Wingender, Dietze et 

al. 1996) and many previous studies have successfully identified meaning motifs in plants and other 

species using 8-mers (Marino-Ramirez, Spouge et al. 2004, Yamamoto, Yoshioka et al. 2011). We 

also predicted 7-mer and 9-mer motifs. We found more than 88% of predicted 7-mer and 9-mer 

motifs are similar to from the discovered 8-mer motifs (STAMP E-value<1E-5 [58]). In the 

MERCED software, a user can set different length for the regulatory sequences and different 

parameter k for k-mer CRE discovery.  

 

Finally, although we have shown various sources of evidence that support our predictions, these 

predictions need to be experimentally validated. Currently, the number of genes with annotated 
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functions in the two algae species is small and experimentally verified CREs are rare. With more and 

more genomic data available, the prediction accuracy can be further improved and better evaluated. 

For example, recent sequencing technology has generated more large-scale measurement of gene 

expression and TF binding and produced ChIP-seq and RNA-seq datasets in many species (Johnson, 

Mortazavi et al. 2007, Robertson, Hirst et al. 2007). There are already four RNA-seq datasets 

available in GEO and 15 samples available in Sequence Read Archive in C. reinhardtii (Miller, Wu 

et al. 2010, Castruita, Casero et al. 2011, Fischer, Ledford et al. 2012, Urzica, Adler et al. 2012). 

Although the number is still small, the data processing strategies e.g., data normalization and isoform 

identification, are still under development, we can foresee in the near future, a large number of RNA-

seq and ChIP-seq datasets can be integrated for CRE prediction and evaluation under different 

experimental conditions. Additionally, with more genome sequenced, we will be able to integrate 

more species into our comparative-genomics study, for which, species-divergence-time incorporation 

is expected to produce more accurate conservation estimation. 

2.2 SIOMICS: a Novel Approach for Systematic Identification of Motifs in ChIP-seq Data  

2.2.1 Background 

Systematic discovery of transcription factor binding sites (TFBSs) and binding motifs is crucial for 

the study of gene transcriptional regulation (Birney, Stamatoyannopoulos et al. 2007). TFBSs are 6 

to 14 base pairs long DNA segments that can be bound by transcription factors (TFs) (Wingender, 

Dietze et al. 1996, Blanchette, Bataille et al. 2006, Cai, Hou et al. 2010). A TF usually binds to 

similar TFBSs. The pattern of the TFBSs bound by a TF is called a motif, commonly represented as a 

position weight matrix (PWM) or a consensus sequence (Stormo 2000). The binding of TFBSs by 

TFs can activate or repress the transcription of genes near the TFBSs, thus can modulate gene 
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expression (Arnone and Davidson 1997). In eukaryotes, it is often the TFBSs of multiple TFs in a 

short DNA region that determines the temporal spatial expression pattern of a gene (Arnone and 

Davidson 1997). The short DNA regions of several hundred base pairs long that contain TFBSs of 

multiple TFs are called cis-regulatory modules (CRMs). Correspondingly, we define a motif module 

as a group of TFs with their TFBSs co-occurring in significantly many CRMs. In other words, a 

motif module has the TFBSs of all its motifs co-occurring in at least a given number of sequences 

and has a p-value of motif co-occurring smaller than a given threshold. Because the chance that a 

short DNA region is a CRM of a motif module is much smaller than the chance that a short DNA 

segment is a TFBS of a motif, the identification of TFBSs and motifs through the identification of 

CRMs and motif modules is likely less error-prone than that through the identification of TFBSs of 

individual TFs (Blanchette, Bataille et al. 2006, Ding, Hu et al. 2012, Ding, Li et al. 2012).  

 

The Chromatin immunoprecipitation followed by massive parallel sequencing (ChIP-seq) 

experiments provide a great opportunity for computational identification of TFBSs and motifs 

(Birney, Stamatoyannopoulos et al. 2007, Robertson, Hirst et al. 2007). ChIP-seq experiments can 

define DNA regions that are enriched with TF binding for a TF under a specific condition on the 

genome scale. These DNA regions are often called ChIP-seq peak regions. ChIP-seq peak regions, 

which are averagely several hundred base pairs long, can be identified from ChIP-seq experiments 

through peak-calling algorithms (Ji, Jiang et al. 2008, Zhang, Liu et al. 2008). Depending on the TF 

used for the ChIP-seq experiments, there could be several hundred to thousands of peak regions 

defined in one ChIP-seq experiment. Effective computational methods are necessary to 

systematically discover motifs and TFBSs of the TF and those of its cofactors. Here and in the 
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following, a cofactor is a TF that regulates its target genes with the TF used to do the ChIP-seq 

experiment. 

 

Several computational methods identify motifs in top ChIP-seq peak regions (Jothi, Cuddapah et al. 

2008, Valouev, Johnson et al. 2008). Such a type of approaches is likely to miss many potential 

motifs since TFBSs of cofactors may only occur in some ChIP-seq peaks (Bailey 2011). A few 

methods attempt to identify TFBSs and motifs in all peak regions, by using known motifs to scan 

(extended) ChIP-seq peak regions to identify significantly co-occurring motifs (Sun, Guns et al. 

2012, Ding, Cai et al. 2013). This type of approaches has achieved certain success in identifying 

motifs of underrepresented cofactors (Ding, Cai et al. 2013). Since current knowledge of known 

motifs is still limited, TFBSs and motifs of many cofactors are likely missed by this type of methods. 

There are also methods for de novo discovery of TFBSs and motifs in all peak regions from a ChIP-

seq experiment (Hu, Yu et al. 2010, Kulakovskiy, Boeva et al. 2010, Bailey 2011, Thomas-Chollier, 

Herrmann et al. 2012). Almost all of this type of methods considers individual motifs separately. 

Note that TFBSs of certain cofactors may only occur in a small number of peaks (Bailey 2011, 

Stamatoyannopoulos 2012). Motifs of these cofactors may thus be statistically insignificant 

individually, as shown in the following analyses. The currently available de novo motif discovery 

methods may thus miss motifs and TFBSs of many cofactors. 

 

Here we developed a novel computational approach SIOMICS (systematic identification of motifs in 

Chip-seq data) for de novo discovery of motifs and TFBSs from all peak regions of a ChIP-seq 

experiment. Instead of considering individual motifs separately for motif discovery, SIOMICS 

simultaneously considers motif modules, i.e., combinations of any number of motifs that co-occur in 
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at least a predefined number of peak regions and have p-value of statistical significance smaller than 

a given threshold. Instead of considering only motifs that are significantly overrepresented in ChIP-

seq peak regions, SIOMICS takes both overrepresented and non-overrepresented motifs into account. 

Tested on 13 ChIP-seq datasets, SIOMICS identified many known motifs, new motifs, and their 

TFBSs. Tested on 13 simulated random datasets that were obtained by permuting the experimental 

sequence data, SIOMICS did not predict any false motif. Compared with two recent methods, Dreme 

(Bailey 2011) and Peak-motifs (Thomas-Chollier, Herrmann et al. 2012) , SIOMICS identified more 

known cofactor motifs in ChIP-seq datasets and the same or fewer false motifs in random datasets, 

and had a comparable or better time efficiency. 

2.2.2 Materials and Methods 

2.2.2.1 ChIP-seq Experimental Data and Simulated Data 

We obtained the ChIP-seq experimental data for 13 TFs from Chen et al (Chen, Xu et al. 2008), 

which were widely used as the benchmark datasets for evaluating TFBS and motif identification 

methods (Bailey 2011, Thomas-Chollier, Herrmann et al. 2012). We first downloaded the mapped 

reads from GSE11431 in the Gene Expression Omnibus database (Edgar, Domrachev et al. 2002). 

We then defined ChIP-seq peaks for each dataset using the peak-calling software MACS (Zhang, Liu 

et al. 2008). Finally, we obtained the repeat-masked DNA sequences for the defined peak regions 

using the University of California, Santa Cruz (UCSC) genome browser for each TF (Kent, Sugnet et 

al. 2002). Note that at this step, to enable TFBSs of more cofactors to be considered, we extended the 

peaks equally on the two sides of each peak region such that each extended peak region is at least 

800 base pairs long. With these experimental sequence datasets, we obtained 13 simulated sequence 

datasets by randomly permuting nucleotide positions in every obtained sequence in each dataset. In 
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brief, for a given sequence, say it is n base pairs long, we will randomly generate a permutation of (1, 

2, 3, …, n), say (a1, a2,…, an). We will then move the first nucleotide in this sequence to the a1-th 

position of the new sequence, the second nucleotide in this sequence to the a2-th position of the new 

sequence, …, the n-th nucleotide to the an-th position of the new sequence. In this way, we obtain a 

new sequence. We repeat this process for every sequence, using an independent permutation each 

time. 

2.2.2.2 Generation of Motif Candidates 

SIOMICS identifies motifs by simultaneously considering multiple motifs corresponding to a TF and 

its cofactors. Since the majority of motifs are still unknown, SIOMICS first obtains motif candidates 

and then considers the co-occurrence of the motif candidates to define final putative motifs. To 

generate motif candidates, SIOMICS utilizes k-mers (k base pairs long DNA segments) in the input 

sequences in a ChIP-seq dataset. Here k=8 was used in the following analyses because an 8-mer can 

already account for an essential portion of a motif since a common motif is only 6 to 14 base pairs 

long (Wingender, Dietze et al. 1996). For each k-mer occurring in input sequences, SIOMICS 

defines it as an k-mer motif candidate by assuming all k-mers in input sequences that are different 

from this k-mer at most at one position as its TFBSs. SIOMICS then ranks these motif candidates in 

a ChIP-seq dataset by the following score schema used previously (Liu, Brutlag et al. 2002), from the 

one with the largest score to the one with the smallest score: guo. Here mx is the number of TFBSs of 

a motif candidate, ijp is the frequency of the nucleotide j at position i of the motif candidate and 

)(0 sp is the probability of generating TFBSs based on background nucleotide frequencies. Other 

score schemas (Li and Wong 2005, Li, Zhong et al. 2005) have also been tested and do not change 

the results significantly, which may be due to the fact that final putative motifs in a ChIP-seq dataset 

are obtained from motif modules. Because many motif candidates may be highly similar to each 



www.manaraa.com

36 

 

other, SIOMICS removes redundant motif candidates with lower ranks such that the consensus 

sequence of a remaining motif candidate is different from that of other remaining candidates at least 

at two positions. All remaining motif candidates are used in the following to identify putative motifs. 

2.2.2.3 Putative Motif Identification by SIOMICS 

With the motif candidates in a ChIP-seq dataset, SIOMICS modifies a frequent pattern mining 

approach developed in our previous studies (Cai, Hou et al. 2010, Ding, Cai et al. 2013) to discover 

motifs through the identification of motif modules. The basic idea is to represent motif candidates as 

nodes in a tree such that more frequent motif candidates are represented at top level (close to the 

root) and each branch represents the co-occurrence of a group of motif candidates in one or multiple 

ChIP-seq peaks. Next, an idea similar to the conditional probability is applied to discover groups of 

co-occurring motif candidates that contain a specific motif candidate and have their TFBSs co-

occurring in at least s sequences (Cai, Hou et al. 2010, Ding, Cai et al. 2013). Here is called the 

support of a group of motif candidates. Finally, a Poisson clumping heuristic strategy (Aldous 1989, 

Hu, Hu et al. 2008) is implemented to measure the statistical significance of each obtained group of 

co-occurring motif candidates and output motif modules. The basic idea of this significance 

calculation is to approximate the occurrence of each motif candidate in sequences by an independent 

Poisson process and measure how likely we will observe a group of motif candidates occurs in x 

peak regions, where x>=s (Hu, Hu et al. 2008).For example set s=100, if a group of motif candidates 

occurs in more than 100 (e.g. 200) peak regions, this group of motif candidates will be kept to be 

module candidates. Otherwise (occurs only in 90 peak regions), it will be discarded.  So a motif 

module predicted by SIOMICS is a group of motif candidates with their TFBSs co-occurring in at 

least s peak regions and with the multiple comparison corrected p-value of co-occurrence smaller 
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than 0.01 or a user specified significance cutoff. The motif candidates in these predicted motif 

modules are output as the final putative motifs.  

 

Because the large number of peak regions in a ChIP-seq dataset, the number of motif candidates 

obtained in the above section can be large. Applying the above approach directly to discover motif 

modules might be time-consuming. To deal with the potential large number of motif candidates 

above and minimize the time cost, SIOMICS applies the following strategy to discover motifs 

(Figure 2-3). In brief, with a user specified maximal number of motifs to be identified, say n, firstly, 

SIOMICS considers the top n motif candidates to discover motif modules. Assume there are n1 

distinct motif candidates included in the predicted motif modules. SIOMICS outputs these n1 motif 

candidates as putative motifs. Next, SIOMICS iteratively identifies other motif candidates that form 

motif modules with the identified putative motifs, by considering different groups of n motif 

candidates each time. Each group of n motif candidates always include all putative motifs discovered 

so far. Finally, if n putative motifs have been predicted or no new putative motifs have been 

identified after a certain number of iterations, say r iterations, SIOMICS reports all predicted putative 

motifs, motif modules, and TFBSs, and stop. See the following algorithm for details. 
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Figure 2-3 SIOMICS Procedure 

Algorithm: iterative identification of motifs 

INPUT: ChIP-seq sequences, ranked motif candidates, n, r, s 

Output: motifs, motif modules, and TFBSs. 

Procedure: 

1. Initialization: set iteration=0. Discover motifs and motif modules with the top n motif candidates by the above 

frequent pattern mining approach (Cai, Hou et al. 2010, Ding, Cai et al. 2013), with the support s. Output the n1 

motifs included in the predicted motif modules.  

2. while n1<n and iteration<r  

3. Discover motifs and motif modules with n motif candidates, which include the n1 motif candidates 

contained in the predicted motif modules and the top n-n1 motif candidates that have not been used together 

with the n1 motif candidates for motif module discovery. Output the n2 motifs discovered in the predicted 

motif modules. 

4. if n2=n1  
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5. Iteration =0 

6. while iteration<r and n2=n1 

7. iteration=iteration+1 

8. Discover motifs and motif modules with n motif candidates, which include the n1 motif 

candidates and the top n-n1 motif candidates that have not been used together with the n1 motif candidates 

for motif module discovery. Output the n2 motifs included in the predicted motif modules. 

9. n1 = n2.  

10. Output the predicted motifs, motif modules, and TFBSs. 

2.2.2.4 Cofactors of 13 TF 

We obtained known cofactors of the 13 TFs in two ways. One was to extract all cofactors mentioned 

in (Bailey 2011), which used the ChIP-seq data for the 13 TFs to test the developed motif discovery 

algorithm. The other was to obtain all interacting TFs for each of the 13 TFs from the BioGRID 

database (http://thebiogrid.org/) (Chatr-Aryamontri, Breitkreutz et al. 2013), and then confirm each 

TF by literature search, if they were predicted as a cofactor by any of the 3 software, SIOMICS, 

Dreme, and Peak-motifs. 

2.2.2.5 Comparisons of Predicted Motifs with Known Motifs 

For the identified motifs, which were included in certain motif modules, we compared them with 

known motifs in two public databases, TRANSFAC V11.3 (Wingender, Dietze et al. 1996) and 

JASPAR 2010 (Sandelin, Alkema et al. 2004). We applied the STAMP tool (Mahony and Benos 

2007) with two different E-value cut-offs that were used in previous studies (Ding, Hu et al. 2012, 

Ding, Li et al. 2012), 1E-4 and 1E-5, for the comparisons of a predicted motif with a known motif. 

http://thebiogrid.org/
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2.2.3 Results 

2.2.3.1 SIOMICS Identifies Known and New Motifs in Each ChIP-seq Dataset 

We applied SIOMICS with the default parameters to identify motifs in the 13 ChIP-seq datasets and 

13 random datasets. The command used is as follows: “python SIOMICS.py -i seq_fasta -o 

output_directory -w 8 -m 100 -s 1%*n -r 20 -c 0.01”, which means to discover at most 100 motifs of 

length 8 contained in motif modules that occur in at least 1% of the n peak regions from a ChIP-seq 

experiment, with the iteration number 20 to stop and the p-value cutoff 0.01 to define motif modules. 

See the software manual at http://www.cs.ucf.edu/~xiaoman/SIOMICS/SIOMICS.html. SIOMICS 

identified more than 21 known and new motifs in each ChIP-seq dataset. In addition, SIOMICS 

predicted no motif in any random dataset, representing a high specificity (Table 2.1).  

Table 2.1 Predicted motifs by SIOMICS in 13 ChIP-seq datasets and 13 random datasets 

dataset # peaks # predicted 

motifs 

# predicted 

motif 

modules 

%motifs 

similar to 

known 

motifs 

(Evalue<1E-

5) 

#motifs 

similar to 

known 

motifs 

(Evalue<1E-

4) 

#motifs not 

in original 

100 

#motifs 

predicted 

in random 

datasets 

Sox2 7761 99 889 78/99=78.8

% 

96/99=97.0

% 

51/99=51.5

% 

0 

E2f1 20670 99 2510 79/99=79.8

% 

94/99=94.9

% 

55/99=55.6

% 

0 

Stat3 5347 91 1256 72/91=79.1

% 

85/91=93.4

% 

39/91=42.9

% 

0 

Nanog 17834 99 1131 76/99=76.8

% 

96/99=97.0

% 

58/99=58.6

% 

0 

Oct4 6915 73 719 64/73=87.7

% 

69/73=94.5

% 

42/73=45.2

% 

0 

c-Myc 6462 96 1901 74/96=77.1

% 

94/96=97.9

% 

77/96=80.2

% 

0 

Klf4 18144 99 2052 83/99=83.8

% 

96/99=97.0

% 

52/99=52.5

% 

0 

Ctcf 49114 99 784 78/99=78.8

% 

94/99=94.9

% 

38/99=38.4

% 

0 

Zfx 17201 98 1945 75/98=76.5

% 

93/98=94.9

% 

76/98=77.6

% 

0 

Tcfcp2l1 45885 71 782 55/71=77.5

% 

68/71=95.8

% 

41/71=57.8

% 

0 

Esrrb 49127 43 308 35/43=81.4

% 

41/43=95.3

% 

30/43=69.8

% 

0 
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n-Myc 10987 94 1766 72/94=76.6

% 

91/94=96.8

% 

80/94=85.1

% 

0 

Smad1 2185 21 33 21/21=100

% 

21/21=100

% 

16/21=76.2

% 

0 

 

SIOMICS identified many known motifs in each ChIP-seq dataset. Compared with the known motifs 

in the TRANSFAC and JASPAR databases (Wingender, Dietze et al. 1996, Sandelin, Alkema et al. 

2004), in each dataset, more than 76.0% of the predicted motifs are similar to known motifs, 

demonstrating that the predicted motifs by SIOMICS are likely to be biologically meaningful instead 

of arbitrary 8-mer patterns (Table 2.1). On average, in each dataset, more than 62.9% of motifs 

corresponding to the known cofactors of the TF under consideration are predicted by SIOMICS. 

Take the Nanog dataset as an example. SIOMICS identified the Nanog motif in this dataset, which 

occurs in 5.8% of peak regions. In addition, SIOMICS identified six motifs for TFs Sox2, Oct4, Zic3, 

Klf4, Elf5, and Tead1, all of which are known to cooperate with Nanog to regulate their target genes. 

Note that the Zic3 and Elf5 TFBSs occur only in 4.5% and 5.2% of peaks, respectively, and are 

individually not statistically significant enough to be identified if we take the multiple comparisons 

into account. Since SIOMICS considers multiple motifs simultaneously, it identifies these 

individually insignificant motifs. For this dataset, SIOMICS identified motifs of seven out of eight 

known cofactors, demonstrating the success of the systematic discovery motifs in ChIP-seq data by 

SIOMICS. The only motif missed by SIOMICS is the Essrb motif, which is similar to one of the 

predicted motifs in this dataset while did not satisfy the required STAMP E-value cut-off (Mahony 

and Benos 2007) when comparing similarity of the predicted motifs with known motifs.  

 

In addition to motifs corresponding to known cofactors, SIOMICS also identified motifs of potential 

new cofactors. For instance, SIOMICS identified a motif TTTTAAAA in 3 datasets (Sox2, E2f1 and 

Nanog). In each dataset, this motif forms a motif module with the same two motifs GAAAGAAA 
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and CAAAACAA, corresponding to the TFs Hsf (STAMP E-value: 5.3E-06) and Fox (STAMP E-

value 2.5E-05), respectively. Hsf has been shown to be interacted with Fox (Amr, Mohamed et al. 

2006) and Fox has the function “regulation of RNA splicing” (Fogel, Wexler et al. 2012). 

Consistently, we found that the target genes of this motif module significantly share the same gene 

ontology term: regulation of RNA splicing (corrected p-value: 0.0052).  Thus, it is likely that the 

unknown TF corresponding to this new motif may play an important role in regulation of RNA 

splicing together with Hsf and Fox.  

 

To show that SIOMICS can identify motifs that may be underrepresented in ChIP-seq peak regions, 

we checked how many percent of predicted motifs were not from the original top 100 motif 

candidates. As mentioned above, motif candidates were ranked according to their individual 

statistical significance from the most significant ones to the least significant ones. We found that on 

average more than 60% of predicted motifs were from motif candidates that were ranked higher than 

100, implying that many individually insignificant motifs may play important functional roles (Table 

2.1). It also indicates that considering individual motifs separately in motif discovery may miss many 

functional motifs. For instance, in the Oct4 dataset, SIOMICS identified a motif M67 with motif 

consensus TCCACCCC, which is insignificant by itself (corrected p-value=1). However, this motif 

M67 is similar to the motif of the TF Zic2 (NACCACCC, STAMP E-value 1.7E-6), and Zic2 is a 

known cofactor of Oct4 (Pardo, Lang et al. 2010).    

2.2.3.2 SIOMICS Identifies Meaningful Motif Modules in Each ChIP-seq Dataset 

SIOMICS discovered a large number of motif modules in each ChIP-seq dataset and no motif 

module in any random dataset (Table 2.1). The number of motifs is from 2 to 4 in a motif module, 

with the average of 2.15 motifs per motif module. We investigated the functions of the predicted 
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motif modules and found that at least 51.5% (65.2% on average) of motif modules in a dataset is 

partially supported by at least one source of functional evidence.  

 

First, we focused on the predicted motifs that are similar to known motifs to see whether TFs 

corresponding to their similar known motifs interact.  

Table 2.2 Predicted motif modules are supported 

dataset Motif modules 

contain at least a 

pair of interacting TF 

pairs from BioGRID 

p-value of 

Enrichment of 

TF pairs from 

BioGRID 

Shared motif 

modules across 

datasets 

Motif modules with 

preferred motif order 

(corrected p-

value<0.05) 

Motif modules 

supported by at 

least one type of 

evidence 

Sox2 343/889=38.6% 0 261/889=29.4% 208/889=23.4% 582/889=65.6% 

E2f1 1373/2510=54.7% 0 408/2510=16.3% 1452/2510=57.8% 2039/2510=81.2% 

Stat3 469/1256=37.3% 0 289/1256=23.0% 244/1256=19.4% 755/1256=60% 

Nanog 348/1131=30.8% 0 273/1131=24.13% 428/1131=37.8% 712/1131=62.3% 

Oct4 254/719=35.3% 2.2E-271 110/719=15.3% 179/719=24.9% 406/719=56.6% 

c-Myc 715/1901=37.6% 0 331/1901=17.4% 506/1901=26.6% 1166/1901=61.3% 

Klf4 955/2052=46.5% 0 357/2052=17.4% 1044/2052=50.8% 1517/2052=73.4% 

Ctcf 299/784=38.2% 0 181/784=23.1% 402/784=51.3% 584/784=74.5% 

Zfx 535/1945=27.5% 0 321/1945=16.5% 762/1945=39.2% 1207/1945=62.1% 

Tcfcp2l1 169/782=21.6% 8.8E-136 154/782=19.7% 345/782=44.1% 495/782=63.3% 

Esrrb 105/308=34.1% 3.2E-106 51/308=16.6% 125/308=40.6% 204/308=66.2% 

n-Myc 807/1766=45.7% 0 311/1766=17.6% 723/1766=40.1% 1249/1766=70.1% 

Smad1 11/33=33.3% 4.8E-12 9/33=27.3% 3/33=9.1% 17/33=51.5% 

 

We collected all known TF interactions from the BioGRID database (Chatr-Aryamontri, Breitkreutz 

et al. 2013) and obtained 648491 interacting TF pairs. For each dataset, we then examined whether 

motifs of these interacting TF pairs are significantly enriched in the predicted motif modules. We 

found that the corrected enrichment p-value of known interacting TF pairs is smaller than 1E-10 in 

all 13 datasets (Table 2.2, columns 2 and 3), demonstrating that SIOMICS predicted many known 
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interacting TFs in the predicted motif modules.Next, we investigated whether a motif module was 

predicted in multiple datasets. Since the majority of peak regions in the 13 datasets do not overlap 

with each other, the repeated prediction of a motif module in different datasets implies the 

functionality of this motif module. For each dataset, we found a large number of predicted motif 

modules were shared in at least two datasets (Table 2.2). We provided an example of a motif module 

consisting of an unknown motif together with those of the interacting TFs Hsf and Fox above. Here 

is another example. The motif module composed of three motifs, CCTTCCTG, CAAAACAA and 

CTGCTGGG, were found in the Stat3 and E2f1 datasets, which are similar to the Stat3 motif 

(STAMP E-value 4.7E-8), the Sox2 motif (STAMP E-value 4.2E-6), and the Ctcf motif (STAMP E-

value 2.2E-4), respectively. The interaction between Stat3 and Sox2 was reported previously (Foshay 

and Gallicano 2008). Sox2 was also shown to be co-working with Ctcf (Donohoe, Silva et al. 2009). 

In addition to the interactions of Stat3, Sox2, and Ctcf, the three TFs also share similar functions. For 

instance, Stat3 has the function related to system development (Nakashima 1999). So does Sox2 

(Que, Okubo et al. 2007). By analyzing the target genes of this motif module, we found that the 

target genes significantly share the function “system development” (multiple comparison corrected p-

value: 0.03). The functions of the TFs in this motif module are thus consistent with the function of its 

target genes. All these observations on the TF interactions, the TF functional similarity, and the 

function consistency of the TFs and the target genes support the functionality of this motif module.       

 

Finally, we examined the relative order of the TFBSs of a pair of motifs in every predicted motif 

module. The rationale is that if a pair of motifs has their TFBSs in certain preferred order in peak 

regions, TFs corresponding to this pair of motifs likely interact and the motif module may thus be 

biologically meaningful. Similar to our previous study (Cai, Hou et al. 2010), for a given motif pairs 
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in a motif module, we counted in how many peaks the preferred order occurs and then assessed the 

significance by a binomial test. We found that indeed at least 9.1% of motif modules (or 35.8% on 

average) have TFBSs of at least a pair of motifs with preferred order of occurrence in ChIP-seq peak 

regions in each dataset, after multiple comparison correction to define the preferred motif orders 

(Table 2.2). For instance, in the aforementioned example about the unknown motif TTTTAAAA 

together with those of the interacting TFs Hsf and Fox, we find that TFBSs of Hsf prefer to bind to 

the downstream of TFBSs of the Fox motif (Corrected p-value 2.47E-12). The two TFs have been 

shown to interact (Amr, Mohamed et al. 2006). 

2.2.3.3 Comparison with DREME and Peak-Motifs 

We compared SIOMICS with DREME and Peak-motifs on the 13 ChIP-seq datasets and 13 random 

datasets. We used the above default parameters for SIOMICS to output at most 100 motifs.  
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Table 2.3 Comparison of three methods on prediction of known cofactor motifs 

TF Known motifs found (primary and cofactors)  

E-value cutoff E-4 

 SIOMICS DREME Peak-motifs 

Sox2 8/9 (Sox2,Klf4, Stat3, Zic3, Hoxa5, Tcf3, 

Tead1,Oct4) 

8/9 (Sox2, Oct4, Klf4, Stat3,Esrrb, Zic3, Tcf3, 

Tead1) 

4/9 (Sox2,Oct4, Klf4, Esrrb) 

E2f1 7/10(E2f1,Stat3, Klf4, Fox, Sp1, Nfkb1,  

Tbp) 

6/10 (E2f1,Stat3, Myc, Klf4, Creb, Sp1) 3/10 (Klf4, Creb, Sp1) 

Stat3 6/8 (Stat3,Klf4, Sox2, Myc, Sp1, Irf) 6/8 (Stat3,Klf4, Esrrb, Sox2, Myc,Sp1) 6/8 (Stat3,Klf4, Sox2, Esrrb,  

Myc, Sp1) 

Nanog 7/8 (Nanog,Sox2,Oct4, Zic3, Klf4, Elf5, 

Tead1) 

4/8 (Nanog,Sox2, Klf4, Esrrb) 4/8 (Sox2, Oct4, Klf4, Esrrb) 

Oct4 8/10 (Oct4,Sox2, Klf4, Sox10, Ewsr1, 

Nanog, Zic2, Esrrb) 

7/10 (Oct4,Sox2, Klf4, Esrrb, Sox10, Ewsr1, 

Nanog) 

5/10( Oct4,Klf4,Creb, Esrrb, 

Sox10) 

c-Myc 3/4( Stat3, Egr1, Sp1) 3/4 (c-Myc,Stat3, Sp1) 3/4 (c-Myc,Egr1, Sp1) 

Klf4 4/10 (Klf4,Stat3, Sox2, Sp1) 6/10 (Klf4,Stat3,Esrrb, Sox2, Sp1, Myc) 3/10 (Klf4,Stat3, Sp1) 

Ctcf 5/6 (Ctcf,Stat3,Gabpa, Yy1, Smad3) 4/6 (Ctcf,Stat3,Gabpa, Smad3) 2/6 (Ctcf,Myc) 

Zfx 2/4 (Zfx,Stat3) 2/4 (Zfx,Stat3) 2/4 (Zfx,Stat3) 

Tcfcp2l1 7/12(Tcfcp2l1,Stat3,Klf4, sox2, Esrrb, 

Fox, Sp1) 

6/12 (Tcfcp2l1,Stat3, Klf4, Esrrb, Fox, Sp1) 5/12 ( Klf4, Esrrb, Egr1,  Fox, 

Sp1) 

Esrrb 4/10( Esrrb,Klf4, Rxra, Sp1) 8/10(Esrrb,Klf4, Sox2, Stat3, Myc, Rxra, 

Ewsr1, Sp1) 

5/10(Esrrb,Klf4, Stat3, Rxra, 

Sp1) 

n-Myc 2/5 (Stat3,Creb) 2/5(n-Myc,Stat3) 1/5 (n-Myc) 

Smad1 5/9(Sox2, Oct4, Esrrb, Klf4, Stat3) 4/9(Sox2, Esrrb, Klf4, Stat3) 4/9(Sox2,Esrrb, Zic3, Klf4) 

 

For Dreme and Peak-motifs, we used the following commands to output at most 100 motifs as well: 

python dreme.py -p <input_seq> -m 100 -o <output directory>; peaks-motifs -i <input_seq> -prefix 
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peak_motifs -nmotifs 100 -outdir <output directory>. SIOMICS showed advantages over the two 

methods in terms of speed and the number of predicted motifs in experimental and random datasets.  

 

We first compared the sensitivity of SIOMICS with that of Dreme and Peak-motifs based on known 

cofactors of each TF (Table 2.3). In 11 out of 13 the ChIP-seq datasets, SIOMICS did better than or 

at least the same as Dreme. Only in the Klf4 and Esrrb datasets, Dreme predicted motifs of more 

known cofactors. Similarly, in 12 out of the 13 ChIP-seq datasets, SIOMICS did at least the same as 

Peak-motifs. Only in the Esrrb dataset, Peak-motifs predicted motifs of more known cofactors.  

 

To see whether SIOMICS can identify motifs of more cofactors in the Klf4 and Esrrb datasets, we 

applied SIOMICS to predict motif modules that occur in at least 0.5% of the peak regions instead of 

the default 1% of the peak regions, SIOMICS identified 2 and 3 motifs of more cofactors in the Klf4 

and Esrrb datasets, respectively. For instance, SIOMICS did not identify Stat3, Sox2, and Ewsr1 in 

the Esrrb dataset at the default 1% cutoff, while identified these motifs when the cutoff 0.5% was 

used.  

 

We next compared SIOMICS with Dreme and Peak-motifs based on shared motifs predicted by the 

three methods. This is because we currently have limited knowledge of cofactors of a TF and thus the 

above comparison of known cofactors may be limited. In addition, if a motif is predicted by at least 

two of the three independent methods, this motif may be a true motif. To determine whether two 

predicted motifs by two methods are similar, we required their STAMP comparison E-value be 

smaller than 1E-5, a more stringent cut-off used in previous studies (Ding, Hu et al. 2012, Ding, Li et 

al. 2012). We found that for every dataset, SIOMICS predicted much more shared motifs than both 
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Dreme and Peak-motifs (Table 2.4). Since Dreme and Peak-motifs discover one motif at one time, 

this comparison implies the advantage of considering multiple motifs simultaneously instead of 

individual motifs separately.  

Table 2.4 Comparison of the three methods on shared motifs 

Datasets SIOMICS Dreme Peak-motifs 

Sox2 89/99=0.90 60/84=0.71 31/64=0.48 

E2f1 92/99=0.93 64/100=0.64 20/49=0.41 

Stat3 78/91=0.86 56/70=0.80 27/63=0.43 

Nanog 82/99=0.83 60/100=0.60 25/62=0.40 

Oct4 63/73=0.86 66/92=0.72 26/57=0.46 

c-Myc 84/96=0.88 48/86=0.56 22/59=0.37 

Klf4 93/99=0.94 64/100=0.64 27/57=0.47 

Ctcf 89/99=0.90 66/100=0.66 20/48=0.42 

Zfx 83/98=0.85 58/100=0.58 14/49=0.29 

Tcfcp2l1 61/71=0.86 62/100=0.62 17/56=0.30 

Esrrb 28/43=0.65 47/100=0.47 15/49=0.31 

n-Myc 93/94=0.99 60/100=0.60 17/51=0.33 

Smad1 15/21=0.71 19/35=0.54 13/56=0.23 

 

We then compared the specificity of the three methods on 13 random datasets. Since these random 

datasets were obtained by permuting ChIP-seq peak sequences, they represent sequences with no 

biological meaning and thus are expected to contain no motif. Indeed, SIOMICS and Dreme 

predicted no motif in any of these datasets. The fact that no motif was predicted by SIOMICS 

indicates the small false positive rate can be achieved by simultaneously considering multiple motifs. 

Although Dreme considers individual motifs separately, it compares the occurrence of a pattern in a 

ChIP-seq sequence dataset and that in the corresponding permuted dataset (Bailey 2011), which also 

reduces the false positive rate here. We also found that, on average, Peak-motifs identified 8.62 

motifs in a random dataset. We observed that the five datasets with the largest sizes have the larger 

number of predicted positives by Peak-motifs, which at least partially suggests better false positive 

control strategies in large datasets by SIOMICS and Dreme. 
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Finally, we compared the speed of the three methods to discover motifs in the 13 ChIP-seq datasets.  

All the comparisons were done on the same computer with the following configuration: Intel ® 

Core™ 2 Duo CPU E7500 @ 2.93GHz and 4G RAM. We found that Peak-motifs is about 1.43 times 

faster than SIOMICS, which is 15 times faster than Dreme (median). In addition, when the dataset 

size is small, such as several thousand sequences, the difference between the speed of SIOMICS and 

that of Peak-motifs is large (around 3 times); when the dataset size is large, the difference between 

the speeds of the two methods is small (around 1). On the contrary, when the dataset size is large, the 

difference of the speed of SIOMICS and that of Dreme is large (more than 15 times); when the 

dataset size is small, the speed difference of SIOMICS and Dreme is small (around 5 times for 5347 

peaks). These observations demonstrate the efficiency of SIOMICS in dealing with large datasets 

(Figure 2-4). It is also implies that when the number of peaks in a ChIP-seq experiment is large, 

SIOMICS will not only predict motifs of more cofactors than the other two methods, but also have 

the time efficiency advantage compared with the two methods.   

 

Figure 2-4 Time efficiency comparison  
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2.2.4 Discussion  

We developed a novel approach SIOMICS to systematically discover motifs and TFBSs from ChIP-

seq data. Different from available methods, SIOMICS does not depend on limited information of 

known motifs and simultaneously considers multiple motifs. Tested on experimental and simulated 

data, we shown that SIOMICS identifies motifs of more known cofactors and identifies more shared 

motifs in the experimental data. At the same time, SIOMICS has a low false positive rate when tested 

in the simulated data. In addition, we shown SIOMICS is as fast as other methods especially when 

the ChIP-seq datasets are large. SIOMICS is thus a useful alternative method for motif discovery. 

 

We applied SIOMICS on the extended 800 base pairs long sequence around the central ChIP-seq 

peak regions. This is because the central peak regions may not always contain the TFBSs of a 

cofactor. For instance, for the E2f1 dataset, if we only considered the central peak regions defined by 

the MACS software (Zhang, Liu et al. 2008), we could have missed the motif of the E2f1 cofactor, 

Tbp. In the extended E2f1 ChIP-seq peak sequences, SIOMICS identified Tbp as the cofactor of 

E2f1 (STAMP E-value 1.77E-07). A critical question is how long we should extend the peak regions. 

Our experience suggests extension of the central peaks such that each peak is at least 800 base pairs 

long is a good choice. In fact, it has been shown that the majority CRMs are shorter than 800 base 

pairs (Blanchette, Bataille et al. 2006, Cai, Hou et al. 2010).  

 

In addition to the comparisons with DREME and Peak-motifs, we also compared SIOMICS with 

CPModule (Sun, Guns et al. 2012), a recently developed tool to discover motif modules using known 

motifs. As we mentioned above, the number of known motifs is still limited, which is the reason that 

SIOMICS was developed. Even with the same set of known motifs as input, SIOMICS predicted 
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motifs of more known cofactors and higher percentages of motif modules supported by data from 

BioGRID in most of the 13 ChIP-seq datasets within a shorter time.  

 

Users can tune several parameters in the SIOMICS software to optimize the results. The first one is 

the motif length. We recommend use the motif length 8, and also provide users with the choice to 

specify their preferred motif lengths from 6 to 14 base pairs. The second parameter is the minimum 

number of peaks a motif module needs to occur, which was called support above. We used the 

support as 1% of the total number of peaks in a dataset in the above analysis. The smaller the support 

is, the more motifs and motif modules are predicted. We recommend using the support as 1% for the 

speed of the tool. If more information about motif interaction is desired, we recommend use 0.5% as 

the support. The third parameter is the number of motif candidates considered in an iteration of motif 

module discovery. We used 100 as an arbitrary cut-off. Users can increase this number if around 100 

motifs are predicted, as what was shown in several datasets such as the Sox2 and E2f1 datasets 

(Table 2.1). We kept the cutoff as 100 for the convenience of the comparisons with Dreme and Peak-

motifs. We also tried the cutoff 150 for the several datasets and obtained more motifs of known 

cofactors. For instance, in the Klf4 dataset, we identified the motif of an additional Klf4 cofactor 

Tp53 (STAMP E-value 1.7E-05) (Zhang, Geiman et al. 2000), which was not discovered with the 

cutoff of 100. 

 

In Summary, we developed a novel method for de novo systematic discovery of motifs in ChIP-seq 

data. This method is shown to predict motifs of more known cofactors than available methods and 

has comparable speed as the fastest method especially on large datasets. The tool implementing the 
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developed method, SIOMICS, is freely available at 

http://www.cs.ucf.edu/~xiaoman/SIOMICS/SIOMICS.html.    
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2.3 SIOMICS 2: Systematic Discovery of Cofactor Motifs from ChIP-seq Data by SIOMICS. 

2.3.1 Background 

The discovery of transcription factor binding sites (TFBSs) and binding motifs is critical to 

understand gene transcriptional regulation (Blanchette, Bataille et al. 2006, Birney, 

Stamatoyannopoulos et al. 2007). TFBSs are 5-15 base-pair long nucleotide combinations of DNA 

that are bound by regulatory proteins called transcription factors (TFs), which modulate the 

expression of genes near the TFBSs. A TF often binds similar TFBSs, the common pattern of which 

is called a motif (Figure 2-3) (Stormo 2000). In eukaryotic DNA sequences, generally multiple 

TFBSs occur nearby in a short DNA region that determines the expression of genes (Arnone and 

Davidson 1997). Such a short region containing multiple TFBSs, normally several hundred base-pair 

long and rarely more than 2000 base-pair long, is called a cis-regulatory module (CRM) (Arnone and 

Davidson 1997) (Figure 2-3). We define a motif module as a collection of motifs or TFs with their 

TFBSs co-occurring in a significant many short DNA regions (i.e., CRMs) (Hu, Hu et al. 2008, Ding, 

Hu et al. 2012, Ding, Li et al. 2012, Ding, Cai et al. 2013) (Figure 2-5). Statistically, the likelihood of 

a motif module occurring in N sequences is much smaller than that of a motif (Hu, Hu et al. 2008). 

Therefore, the approach of identifying TFBSs and motifs through prediction of motif modules and 

CRMs is less error-prone than that of detecting TFBSs from individual TFs. 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/25171961
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Figure 2-5 An illustration of CRMs, TFBSs, motifs, and motif modules. (A) CRMs are short 

sequences containing    multiple TFBSs. Each line is an input sequence. Each small box on lines 

represents a TFBS. TFBSs of the same TF are represented with the same shape while with different 

colors in different sequences. (B) TFBSs of the same TF are similar to each other. (C) The motif 

corresponding to TFBSs in B and one motif module containing this motif. 

Chromatin immunoprecipitation followed by massive parallel sequencing (ChIP-Seq) experiments 

are generating enormous amount of data that can be harnessed by computational methods to identify 

biologically-relevant TFBSs and motifs (Johnson, Mortazavi et al. 2007, Robertson, Hirst et al. 

2007). With  the high-quality antibody to a given TF, ChIP-seq experiments identify TF-binding 

enriched regions called ChIP-Seq peak regions for this TF by peak calling algorithms such as MACS 

(Zhang, Liu et al. 2008). ChIP-seq peak regions are in general several hundred base-pair long and 

enriched with TFBSs of the TF under consideration and its cofactors (Johnson, Mortazavi et al. 2007, 

Robertson, Hirst et al. 2007). With hundreds or thousands of ChIP-seq peaks, computational methods 

can then search for motifs and TFBSs in the top ChIP-Seq peak regions, all ChIP-seq peak regions, 

or neighboring regions around ChIP-seq peaks.  

 

Many computational methods (Jin, Apostolos et al. 2009, Sharov and Ko 2009, Hu, Yu et al. 2010, 

Kulakovskiy, Boeva et al. 2010, Bailey 2011, Thomas-Chollier, Herrmann et al. 2012, Ding, Cai et 

al. 2013, Ding, Hu et al. 2013) have been developed to discover TFBSs and motifs from ChIP-seq 
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data (Table 2.5). These methods can be broadly divided into two types- those considering one motif 

at a time (Sharov and Ko 2009, Hu, Yu et al. 2010, Kulakovskiy, Boeva et al. 2010, Bailey 2011, 

Thomas-Chollier, Herrmann et al. 2012) and those considering multiple motifs simultaneously to 

discover TFBSs and motifs (Jin, Apostolos et al. 2009, Ding, Cai et al. 2013, Ding, Hu et al. 2013). 

As indicated above, the latter likely predicts motifs and TFBSs more accurately in a ChIP-seq dataset 

than the former. Here we focus on one of the methods from the second type, SIOMICS (Ding, Hu et 

al. 2013). To the best of our knowledge, SIOMICS is the first method that considers multiple motifs 

simultaneously and de novo discovers motifs and TFBSs in a ChIP-seq dataset. It also enhances the 

prediction of cofactor motifs and under-represented motifs and TFBSs from ChIP-Seq data. 

Table 2.5 Commonly used motif prediction tools for ChIP-seq data analysis 

 

Program Notes URL 

DREME Discriminative motif finder http://meme.nbcr.net/meme/doc/dreme.html 

HMS incorporates sequencing depth 
information 

http://www.sph.umich.edu/csg/qin/HMS/ 

ChIPModule Known Motif weight-matrices as 
input  

http://www.cs.ucf.edu/~xiaoman/ChIPModule/Ch
IPModule.html 

SIOMICS De-novo motif discovery http://www.eecs.ucf.edu/~xiaoman/SIOMICS/SIO
MICS.html 

CisFinder Position Frequency Matrix http://lgsun.grc.nia.nih.gov/CisFinder/ 

RSAT peak-
motifs 

Combines four methods http://rsat.ulb.ac.be/peak-motifs_form.cgi 

W-ChIPeaks Probe-based peak enhancement 
and known motifs 

http://motif.bmi.ohio-state.edu/W-ChIPeaks/ 

ChIPMunk Fast heuristic motif digger http://autosome.ru/smbsm/librettos/libretto_chi
pmunk/chipmunk_details.rhtml 

 

In the following, we will first describe the original SIOMICS method (SIOMICS) and its extension 

(SIOMICS_Extension) in the Material and Methods section. Consequently we discuss the 

performance of SIOMICS_Extension on ChIP-seq datasets in the Results section.  Next, in the 

Results section, we will discuss how to apply SIOMICS_Extension to next generation sequencing 
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datasets for motif and TFBS discovery. Finally, we provide more insight about SIOMICS_Extension 

in the Discussion section.  

 

2.3.2 Material and Methods 

2.3.2.1 The Original SIOMICS Methods 

The methods implemented in the original SIOMICS tool has been delineated in (Ding, Hu et al. 

2013). In brief, it starts from a group of input sequences (Figure 2-6). These sequences are from the 

extended regions centered on the original ChIP-seq peak regions. The reason for extending the ChIP-

seq peak regions is that certain cofactor TFBSs may not be included in the original ChIP-seq peak 

regions (Ding, Hu et al. 2013). With the input sequences, SIOMICS ranks all w-mer (w base pair 

long DNA segment, default w=8) patterns in input sequences, based on their likelihood ratio scores 

(Liu, Brutlag et al. 2002) from the largest to the smallest. SIOMICS then iteratively chooses top m w-

mer patterns to count their co-occurrence frequencies (Ding, Cai et al. 2013) and assess the statistical 

significance of the co-occurrence frequencies (Hu, Hu et al. 2008). The top m w-mer patterns used in 

every iteration are different, so that individually insignificant patterns may be identified as motifs 

because of the co-occurrence of the instances of groups of patterns. Each group of statistically 

significant co-occurring w-mer patterns discovered in an iteration is output as a predicted motif 

module, with each w-mer pattern in the predicted motif modules as a predicted motif. The co-

occurring instances of the w-mer patterns of a motif module in input sequences are defined as the 

TFBSs of the motifs in this motif module. The iteration is repeated until m motifs are discovered or 

no new motif is found in r consecutive iterations. Here, m and r are parameters input by users. At the 

end, there will be no more than m predicted motifs, each of which is w base pairs long (default w=8). 
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Figure 2-6 The major steps in SIOMICS_Extension 

2.3.2.2 The Extended SIOMICS Methods  

The major improvement of the SIOMICS tool in the extended version is its ability to output motifs of 

different lengths. In practice, the common motif length varies from 5 to 15 base pairs (Wingender, 

Dietze et al. 1996). The initial SIOMICS tools may thus cause certain problems by requiring the 

predicted motif length be always w base pairs long.  

 

To address this issue, SIOMICS_Extension first considers extending these motifs from the left side, 

or the right side, or both sides. For each discovered motif, SIOMICS_Extension collects all its 

predicted TFBSs in input sequences. Note that many segments in input sequences that are exactly the 

same as the predicted TFBSs of this motif may not be considered as the predicted TFBSs, due to the 

fact that they do not co-occur with the TFBSs of other motifs in the predicted motif modules 

containing this motif. With the predicted TFBSs of this motif, SIOMICS_Extension then considers 

the neighboring nucleotides around the predicted TFBSs. The intuition behind this approach is that if 

this motif is longer than w, it is expected that the neighboring nucleotides around most predicted 
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TFBSs likely share a common nucleotide, on the left side, on the right side, or on both sides. 

SIOMICS_Extension applies a binomial test to assess whether the neighboring nucleotides are 

significantly sharing a type of nucleotides and then decides whether to extend the motif length by 1. 

SIOMICS_Extension extends the motif according to the above principle, one position at a time, from 

the left side to the right side of the currently predicted TFBSs. When no extension can be made, 

SIOMICS_Extension output the final form of the motif with the corresponding TFBSs. If no 

extension is made from the beginning on either side, SIOMICS_Extension also considers extending 

two adjacent positions at a time and repeats the above process until no more extension can be made.  

 

After extending the motifs, there may be some motifs left unchanged. For these motifs, 

SIOMICS_Extension considers reducing their motif lengths. SIOMICS_Extension compares these 

unchanged motifs to see whether two unchanged motifs are similar. Moreover, SIOMICS_Extension 

checks whether these similar motifs form motif modules with a common group of other motifs. The 

following are the detailed procedure of Extending and Reducing: 
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If both criteria are satisfied, SIOMICS_Extension considers whether to merge these similar motifs 

and represent them with the similar portion, by a similar binomial test implemented in the extension 

step.  

Extending: 
Inputs: TFBSs of all predicted motifs 
 

1
st

 Step: Get neighboring nucleotides (8 nucleotides left and right respectively) around the predicted TFBSs of each motif 

2
nd

 Step: Extend left by binomial test 
       Extend rules: 
              Perform binomial test to get the dominant nucleotides in each position (Position X)  
              The total # of nucleotides in specific position X=> NT 

              # of nucleotides (NX) in specific location X=> NX 

              NX belongs to [A, C, G, T] 
              The background frequency of A, C, G, T were learned from the genome of this species=> bg (A/C/G/T) 
              P-value (X) =1-pbinom (NX-1, NT,bg(NX)) (multiple comparisons were performed for these p-values) 
              If P-value (X)<pcut: 
                   ->Keep extending position X+1 

              else 

                   ->perform binomial test for the 2 adjacent positions starting with position X (X and X+1) 
                      If there are NO dominant 2-mers for those 2 adjacent positions at X 

                         -> Quit extending 

                    else 

                         -> Keep Extending on position X+2  

3
rd

 Step: Extend right by binomial test with the same Extend rules 
 

Output:  (1) Extended motifs 

                (2) Un-extended motifs 

    

 
Reducing: 
 
Inputs: un-extended motifs 
 

1
st

 Step:  Get those unchanged motifs after extending procedure => Set U 

2
nd

 Step:  Compare every pairs (a, b) of motifs from U 
                  If these 2 motifs only have one mismatch for their consensus sequences      
                        One mismatch can be the following 3 conditions: 
                          (1) The prefix of a (a except for the last nucleotide) was found exactly in b 

 (e.g. a: ACGTAGT, b: TACGTAG) 
                          (2) The suffix of a (a except for the first nucleotide) was found exactly in b  

 (e.g. a: TCGTAGT, b: CGTAGTA)   
                          (3) a and b have one mismatch  

(e.g. a: CAGTAGT, b: CCGTAGT)      
                          If they also have the same co-factors  
                              -> These 2 motifs will be merged into one motif.  
                                  The PWM of the new motif will be built based on the shared parts of these 2 motifs.  
                       e.g.(1) a: ACGTAGT, b: TACGTAG => share: ACGTAG 
                                   (2) a: TCGTAGT, b: CGTAGT=> share: CGTAGT 
                                            (3) a: CAGTAGT, b: CCGTAGT=> share: C?GTAGT (? Depends on the TFBS instances)  
 
Outputs:  
Reduced motifs  
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To better illustrate the above procedures, we provided the following extending and reducing 

example.   

Extending: 

For example, assume motif a (consensus: CCTGCTGG), the left neighboring position 1of motif a is 

dominant by letter ‘C’ (binomial test, p-value cutoff: 1e-10, other cutoffs like 1e-12, or 1e-5 were 

also tried, results are similar).  We continue to check the left neighboring position 2 of motif a, there 

is no dominant letter was found at this position and then we tried 2 left adjacent positions starting 

from left neighboring position 2, there is still no dominant 2-mers. Based on the extension rule, the 

extending will be ended.  Similarly, we do the same extending to the right positions of motif a.  

Finally, we found that we can only extend motif a to the left 1 position, the motif a will be extended 

to motif a’ (consensus: CCCGTCTGG). The PWM of extended motif a’ is obtained based on the 

TFBS instances (-1 position -> end of the TFBS instances).   

 

Reducing: 

For example, suppose we have identified 2 unchanged motifs after extending, they are: 

motif x (consensus:  ACGGAATG) 

motif y( consensus:     CGGAATGT) 

We compare motif  x and y, and we found that they only 1 mismatch and sharing a consensus 

sequence CGGAATG.  Besides, we have also found there are 2 motif modules (x,z) and (y,z) , which 

means motif x and y have the same co-factor z. Based on the reducing rule, motif x and y will be 

merged into one motif  xy (consensus: CGGAATG), the PWM of motif xy can be obtained from the 
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TFBS instances of original motif x  and y.  These 2 motifs (with length of 8) were merged into one 

motif with length of 7.   

 

After extending and reducing motif lengths, SIOMICS_Extension outputs the final motifs, motif 

modules, and TFBSs (Figure 2-6). The final motifs are those obtained from the extension and 

reduction procedure. The motif modules are produced by running the SIOMICS_Extension with the 

final motifs without any iteration. The TFBSs of the final motif modules are output as the final 

TFBSs. The final predictions are then visualized using STAMP and Cystoscape tools (Shannon, 

Markiel et al. 2003, Mahony and Benos 2007). 

2.3.3 Results 

2.3.3.1 The Performance of SIOMICS_Extension on ChIP-seq Datasets  

We previously applied SIOMICS to 13 real ChIP-seq datasets and 13 random datasets (Ding, Hu et 

al. 2013). We showed that 76.8% to 100% of the predicted motifs by SIOMICS in the 13 real ChIP-

seq datasets were similar to known motifs in public databases (Wingender, Dietze et al. 1996, 

Sandelin, Alkema et al. 2004). The similarity of the predicted motifs to known motifs was measured 

by using the STAMP software (Mahony and Benos 2007) with the similarity E-value cutoff of 1E-5. 

Moreover, many individually underrepresented motifs in the 13 real ChIP-seq datasets were 

discovered by SIOMICS. We also found that no motif was predicted in any of the 13 random datasets 

of the same sizes. Compared with two recent methods for motif discovery on ChIP-seq data (Bailey 

2011, Thomas-Chollier, Herrmann et al. 2012), we showed that SIOMICS predicted motifs of more 

cofactors with a comparable or better speed in real datasets. 
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Here we applied the SIOMICS_Extension to the same 13 real ChIP-seq datasets with the default 

parameters. Since changing motif lengths may make the predicted motifs more similar to true motifs, 

we paid attention to how many more known cofactor motifs were predicted and the time cost to 

finish the prediction on each dataset. In Table 2.6, we listed the name of the known cofactors 

predicted by the original SIOMICS and by the extended SIOMICS_Extension version. The 

SIOMICS_Extension predicts more cofactor motifs in 5 out of 13 datasets and predicted the correct 

motifs for 10 more cofactors in these datasets. For instance, for the Esrrb dataset, the original 

SIOMICS predicted motifs of 3 known cofactors of Esrrb together with the Esrrb motif, while the 

SIOMICS_Extension predicted motifs of 4 more cofactors in addition to the four motifs predicted by 

the original SIOMICS tool (Table 2.6). 

Table 2.6 Comparison of predicted cofactors by original and SIOMICS_Extension 

Data set SIOMICS  SIOMIC Extension 

Sox2 8/9(Sox2,Klf4,Stat3,Zic3,Hoxa5,Tcf3,Tead1,Oct4) 8/9(Sox2,Klf4,Stat3,Tead1,Oct4,Zic3,Tcf3,Hoxa5) 

E2f1 7/10(E2f1,Stat3,Klf4,Fox,Sp1,Nfkb1,Tbp) 8/10(E2f1, Stat3,Klf,Fox,Sp1,Nfkb1, Creb1,Tbp) 

Stat3 6/8(Stat3,Klf4,Sox2,Myc,Sp1,Irf) 6/8(Stat3,Klf4,Sox2,Myc,Sp1,Irf) 

Nanog 7/8(Nanog,Sox2,Oct4,Zic3,Klf4,Elf5,Tead1) 8/8(Nanog,Sox2,Oct4,Zic3,Klf4,Esrrb,Elf5,Tead1) 

Oct4 8/10(Oct4,Sox2,Klf4,Sox10,Ewsr1,Nanog,Zic,Esrrb) 8/10(Oct4,Sox2,Klf4,Sox10,Ewsr1,Nanog,Esrrb,Tead1) 

c-Myc 3/4(Stat3,Egr1,Sp1) 3/4(Stat3,Egr1,Sp1) 

Klf4 4/10(Klf4,Stat3,Sox2,Sp1) 5/10(Klf4,Stat3,Sp1,Myc,Sox2) 

Ctcf 5/6(Ctcf,Stat3,Gabpa,Yy1,Smad3) 5/6(Ctcf,Stat3,Gabpa,Smad3,Myc) 

Zfx 2/4(Zfx,Stat3) 2/4(Zfx,Stat3) 

Tcfcp2l1 7/12(Tcfcp2l1,Stat3,Klf4,Sox2,Esrrb,Fox,Sp1) 10/12(Tcfcp2l1,Stat3,Klf4,Sox2,Fox,Sp1,Oct4,Creb,Myc,Tead1) 

Esrrb 4/10(Esrrb,Klf4,Rxra,Sp1) 8/10(Esrrb, Klf4,Rxra,Sp1,Ewsr1,Creb,Sox2,Stat3) 

n-Myc 2/5(Stat3,Creb) 2/5(Stat3,Creb) 

Smad1 5/9(Sox2,Oct4,Esrrb,Klf4,Stat3) 5/9(Sox2,Oct4,Klf4,Stat3,Esrrb) 
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We also studied the time cost of the SIOMICS_Extension. All calculations were done on the same 

computer with the following configuration: Intel Core TM 2 Duo CPU E7500 @ 2.93GHz and 

4GRAM. The running time of the SIOMICS_Extension was about 31.4% more than that of the 

original version on average, with the median increment of 10.5%. For the largest dataset, the Esrrb 

dataset, the running time was 51412 CPU seconds. This dataset contains 49127 sequences, each of 

which is 800 base pairs or longer. For a smaller dataset that contains 5347 sequences, the Stat3 

dataset, the running time was 8775 CPU seconds (about 2.44 CPU hours). Note that the time cost of 

the SIOMICS_Extension was still lower than that of Dreme (Bailey 2011), a popular method for 

motif discovery on ChIP-seq data, on the corresponding datasets. We also noticed that the increment 

of the running time becomes smaller when the size of the datasets increases. For instance, for the 

aforementioned largest dataset, the time cost only increased 4.7%. On the other hand, for the 

aforementioned smaller dataset, the time cost increased 64.1%. The detailed running speed 

comparison for SIOMICS, SIOMICS_Extension and Dreme were provided in Figure 2-7.  

 

Figure 2-7 Time efficiency comparison of SIOMICS_Extension 
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2.3.3.2 The Prerequisites to Run SIOMICS_Extension  

SIOMICS_Extension is a multiplatform too Time efficiency comparison between 

SIOMICS_Extension, SIOMICS and Dreme that comes packaged with a graphical user interface 

(GUI) and a command line interface along with extensions to make comparative analyses. The 

following requirements must be met in order to successfully setup and run the SIOMICS_Extension 

tool: 

(1) Users need to install the Python 2 or Python 3. If the Linux version is desired, in order to 

enable GUI, users need to install Tkinter (Python 2) or tkinter (Python 3). 

(2) Users need to install Java Runtime Environment. 

(3) Users may also need to configure the Environment Variable for running java and python. 

The detailed instructions of how to set up the required environment has been provided in the manual 

of the SIOMIC_Extension tool. 

2.3.3.3 The Input to SIOMICS 

The input to the SIOMICS_Extension tool is the name of a sequence file together with 7 other 

parameters. The sequence file must be in the FASTA format, with the sequence length around 800 

base pairs. Although SIOMICS_Extension can deal with longer sequences, it is recommended that 

the majority sequences should be shorter than 1500 base pairs. 

 

Table 2.7 summarizes the major eight parameters in SIOMICS_Extension along with their functions. 

Among these parameters, -w controls the length of motifs before extension and reduction. We 

recommend use the default w=8, based on our experience on motif discovery (Ding, Li et al. 2012, 

Ding, Hu et al. 2013). The parameter –m controls the maximal number of motifs predicted. It also 

specifies the number of top w-mer patterns considered for motif module discovery in each iteration. 
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Users can start to run SIOMICS with m=100. If close to 100 motifs are discovered, say 95, users can 

increase m by 50 and try to run SIOMICS again. We rarely see more than 200 motifs predicted in a 

ChIP-seq dataset using an antibody against a TF. The –c parameter specifies the multiple-

comparison-corrected p-value cutoff. The –s parameter tells how frequent the co-occurrence of w-

mer patterns needs to be. The smaller –s parameter is, the longer the running time SIOMICS takes. 

We normally expect that each unknown cofactor bind at least 1% of the ChIP-seq peak regions and 

thus set the default –s parameter correspondingly. The –r parameter does not affect the results much. 

With larger –r parameter, users can obtain more comprehensive predictions with higher time cost. 

The default –r parameter is also recommended be used. 

Table 2.7 Initial parameters for SIOMICS 

Command line 

argument 

Function 

-i  Input sequence file  

-o The output folder for prediction results 

-w  Initial motif length to search 

-m Maximum number of motifs to output 

-s Minimum number of sequences needed to contain co-occurring TFBSs 

of a motif module 

-c Multiple comparison corrected P-value cutoff for motif module 

prediction 

-r Maximum number of iterations with no new motif discovered allowed  

 

2.3.3.4 The Output of SIOMICS_Extension 

SIOMICS_Extension output seven files, each of which is briefly described in Table 2.8. The 

predicted motifs are included in the file named X.motifs, which provides the motif position weight 

matrix together with other information that can be used to scan sequences to define putative TFBSs. 

If users want to know which known motifs are similar to these predicted motifs, they can examine 
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two other files named X.JASPAR.pdf and X.TRANSFAC.pdf. These two files include the 

comparison results of the predicted motifs with the known motifs in the JASPAR (Sandelin, Alkema 

et al. 2004) and TRANSFAC databases (Wingender, Dietze et al. 1996). The file X.mc contains all 

predicted motif modules. For each motif module, this file provides the motifs included in this 

module, the number of sequences containing the co-occurring TFBSs of all motifs in this module, 

and the statistical significance of this module represented as the multiple-comparison-corrected p-

value. If users want to explore the global picture of the motif (TF) interaction under the current 

experimental condition, they can utilize Cytoscape (Shannon, Markiel et al. 2003) to open the file 

named X.mc.sif. This file presents the predicted motif modules in a network, in which motifs (TFs) 

are denoted as nodes and two motifs are connected if they co-occur in at least one predicted motif 

module. The seventh file is the running log file, which stores the running time and the command used 

for a dataset under consideration. 

Table 2.8 Output files from SIOMICS 

Output files Description 

X.motifs Predicted motifs from SIOMICS 

X.mc Predicted motif modules 

X.JASPAR.pdf predicted motifs compared with JASPR motifs  

X.TRANSFAC.pdf        predicted motifs compared with TRANSFAC motifs 

X.mc.sif Interaction network to be viewed in Cytoscape  

X.tfbs TFBSs of the predicted motifs  

running.log Runtime and command log of SIOMICS 

2.3.3.5 SIOMICS_Extension Workflow 

Here we provide a brief walk-through for a normal use case of the SIOMICS_Extension application. 

More details can be found on the software manual page.  
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1. The data to be processed needs to be in FASTA format, with each sequence in the following 

format: 

> Oct4  <Sequence identifier>  

ACGTACT…… <sequence nucleotide information> 

See the software manual page for detailed examples. This FASTA sequence file is 

recommended be repeat masked at http://www.repeatmasker.org/ or locally. 

2. With the sequences, we can open the SIOMICS with the default parameters to start the motif 

and TFBS prediction. See the interface opened on the software manual page or at 

http://www.eecs.ucf.edu/~xiaoman/SIOMICS/man_Extension.html. 

3. The GUI window near the bottom will display a message, “Running…” to indicate that the 

software has begun motif discovery. It will display “Done” with all the output files and the 

corrections made. 

4. If Cytoscape is installed and the extensions are enabled, the end of processing in 

SIOMICS_Extension will take users directly to the interaction network mapping. Otherwise, 

users can open the X.mc.sif file using the Cytoscape software (Shannon, Markiel et al. 2003). 

2.3.4. Discussion 

We developed a useful tool set SIOMICS for systematic discovery of motifs in ChIP-seq datasets. 

Tested on 13 real ChIP-seq datasets and 13 random datasets, we showed that SIOMICS predicted 

motifs of known cofactors in each real dataset while no motif in any random dataset (Ding, Hu et al. 

2013). We also compared SIOMICS with two motif discovery methods developed for ChIP-seq data 

analysis (Bailey 2011, Thomas-Chollier, Herrmann et al. 2012). SIOMICS Showed superior or at 

least comparable performance in terms of the number of motifs of known cofactors predicted in real 

http://www.repeatmasker.org/
http://www.eecs.ucf.edu/~xiaoman/SIOMICS/man_Extension.html
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datasets, false motifs predicted in the random datasets, and the time cost of the predictions (Ding, Hu 

et al. 2013). With GUI, SIOMICS will be a useful tool for the systematic study of gene transcription 

regulation based on ChIP-seq experiments. 

 

In the extension version of the SIOMICS tool –SIOMICS_Extension, we modified the motif length 

of a motif based on its predicted TFBSs from all motif modules containing this motif. Alternatively, 

we can implement similar procedures using all its TFBSs from individual motif modules containing 

this motif. In this way, we might identify different forms of the same motif when this motif co-occurs 

with different cofactor motifs. However, given the large number of the predicted motif modules, this 

process may take a large amount of time. Moreover, there may be not many motifs with different 

forms when they cooperate with different cofactors. In fact, tested on the 13 real datasets, we rarely 

found different forms produced from the same w-mer motifs. We thus consider all TFBSs of a motif 

from all motif modules containing this motif. 

 

Although SIOMICS tool set (Original SIOMICS and SIOMICS_Extension) is developed for ChIP-

seq data, it also works well on small datasets not from ChIP-seq experiments. We tested SIOMICS 

on small datasets with around a dozen to several dozen 1000 base-pair long sequences (Chang, 

Sneddon et al. 2004, Wang, Klijn et al. 2005, Weigelt, Hu et al. 2005, Li, Cheng et al. 2006). 

SIOMICS identified motifs of several TFs shared by these independent breast cancer related datasets. 

Note that when the number of sequences is small, we recommend that a relative larger –s parameter 

should be used to control the false positive rate of the predictions. 
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In summary, we developed a useful tool for gene transcriptional regulation studies. The developed 

SIOMICS tool set (Original SIOMICS and SIOMICS_Extension) together with its manual, test 

datasets, and others is freely available at http://www.cs.ucf.edu/∼xiaoman/SIOMICS/SIOMICS.html. 

We will continue to keep the updated versions on this site to help researchers fully utilize the 

potential of the ChIP-seq data.  

http://www.cs.ucf.edu/~xiaoman/SIOMICS/SIOMICS.html
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CHAPTER 3: POST TRANSCRIPTIONAL REGULATON-MICRORNA 

BINDING 

3.1 miRModule: MicroRNA Modules Prefer to Bind Weak and Unconventional Target Sites 

3.1.1 Background 

MicroRNAs (miRNAs) play critical roles in gene regulation (Bartel 2004, Bartel 2009). MiRNAs are 

a family of small (~22 nucleotides) non-coding RNAs. They can bind mRNAs at 5’ untranslated 

regions (UTRs), coding sequences (CDSs), and 3’ UTRs. The binding is traditionally thought to be 

through base-pairing of the seed regions in miRNAs with the partially complementary sequences in 

target mRNAs (Bartel 2009). The seed region refers to the 5’ end of miRNAs from position 2 to 

position 7 (Lewis, Shih et al. 2003, Lewis, Burge et al. 2005). Depending on the pairing quality, 

miRNA target sites are classified into two categories: canonical sites and non-canonical sites. The 

former are target sites that are perfect complementary to the seed regions, while the latter are target 

sites with imperfect seed  complementarity (G:U wobbles or mismatches). With the advance of 

biotechnology, it is accepted that base-pairing can involve both seed regions and non-seed regions 

(Hafner, Landthaler et al. 2010, Helwak, Kudla et al. 2013, Wang 2014). That is, other types of target 

sites exist in addition to the canonical and non-canonical target sites. We define unconventional sites 

as target sites other than the canonical sites. Regardless of the types of target sites, the binding of 

miRNAs to their target mRNAs during diverse cellular processes may degrade target mRNAs, and/or 

repress the translation of target mRNAs to proteins (Bartel 2004, Bartel 2009, Wang, Li et al. 2011). 

Due to such pivotal roles in gene regulation, it is critical to study miRNAs and their target sites. 

 

miRNAs often form modules to regulate target mRNAs (Doench and Sharp 2004, Vella, Choi et al. 

2004, Krek, Grun et al. 2005, Saetrom, Heale et al. 2007, Wu, Huang et al. 2010). In this study, a 
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miRNA module is defined as a group of miRNAs that co-bind a significant number of mRNAs and 

repress the expression of these common mRNAs significantly more than individual miRNAs in the 

module (Sections 2.2-2.3). Several studies show that miRNA modules synergistically control the 

expression of their common target mRNAs (Doench and Sharp 2004, Vella, Choi et al. 2004, Krek, 

Grun et al. 2005, Saetrom, Heale et al. 2007, Wu, Huang et al. 2010). For instance, miR-124, miR-

375, and let-7b form a miRNA module that coordinately regulates the gene Mtpn in a murine 

pancreatic cell line (Krek, Grun et al. 2005). The distance between adjacent target sites of miRNAs in 

the same miRNA modules may play critical roles in target mRNA down-regulation (Doench and 

Sharp 2004, Saetrom, Heale et al. 2007). According to multiple past experiments, the distance of 

miRNA target sites for optimal down-regulation of target mRNAs is between 13 and 35 nucleotides 

(Doench and Sharp 2004, Kloosterman, Wienholds et al. 2004, Vella, Choi et al. 2004, Brennecke, 

Stark et al. 2005). Saetrom et al. computationally showed that miRNA target sites within 130 

nucleotides are more likely conserved than more distant sites in 3’ UTRs (Saetrom, Heale et al. 

2007), suggesting that target sites of miRNAs may need to be within certain ranges to be functional. 

Several studies also defined miRNA modules by harnessing predicted miRNA target sites in 3’ UTRs 

and the co-expression relationship of target mRNAs of the same miRNAs (Jayaswal, Lutherborrow 

et al. 2011, Zhang, Li et al. 2011, Bryan, Terrile et al. 2013). 

 

Despite various studies mentioned above, our understanding of miRNA modules is still rudimentary. 

To our knowledge, all published large-scale studies on miRNA modules so far are based on 

computationally predicted miRNA target sites in 3’ UTRs. However, 3’ UTRs only account for a 

small portion of potential miRNA target site residing regions (Hafner, Landthaler et al. 2010, 

Helwak, Kudla et al. 2013). Moreover, even the most well-known target site prediction methods 
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currently produce a significant fraction of false positive target sites (Witkos, Koscianska et al. 2011). 

In addition, in defining miRNA modules, few computational studies require the higher down-

regulation of target gene expression by miRNA modules than that by subsets of miRNAs contained 

in the modules (Wu, Huang et al. 2010). Therefore, although we have gained basic insight into 

miRNA modules from previous studies, our understanding of miRNA modules may be biased and 

limited.   

 

In this study, we employed experimentally determined instead of computationally predicted target 

sites to study miRNA modules. We predicted 181 miRNA modules and 306 potential miRNA 

modules. We analyzed binding energy, location, and distances of target sites in these predicted 

miRNA modules. We observed that target sites of these predicted modules were in general weaker 

compared with target sites not bound by miRNA modules. We also discovered that miRNAs in 

predicted modules preferred to bind only unconventional target sites, instead of only canonical sites, 

or a mixture of canonical and unconventional sites. Contrary to a previous study (Saetrom, Heale et 

al. 2007), we noticed that most target sites of miRNAs from the same modules were not within the 

range of 10 to 130 nucleotides. Interestingly, the distance of target sites bound by miRNAs in the 

same modules was shorter when miRNA modules bound unconventional instead of canonical sites. 

Our study sheds new light on miRNA binding, which will likely advance our understanding of 

miRNA regulation.  
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3.1.2 Material and methods 

3.1.2.1 The Clash Data and Gene Expression Data 

We downloaded the experimentally-determined miRNA target sites from the crosslinking, ligation, 

and sequencing of hybrids (CLASH) experiments (Helwak, Kudla et al. 2013). In these experiments, 

a miRNA and one of its interacting mRNA target sites were ligated and sequenced as a chimeric 

segment. The sequenced chimerical segments for multiple miRNAs and their target mRNAs were 

then separated into segments from miRNAs and segments from their target mRNAs, which provided 

the information of which miRNAs targeted which region of their target mRNAs. We obtained 18514 

high-confidence miRNA-mRNA interactions in HEK293 cells. These interactions involved 399 

miRNAs, 7390 mRNAs, 4130 canonical sites, 10300 non-canonical sites, and 14384 unconventional 

sites. Among these target sites, 1034 (5.6%), 11367 (61.4%), and 6096 (32.9%) of them were within 

5’ UTRs, CDSs, and 3’ UTRs, respectively. The remaining 17 target sites were not within any 

annotated mRNA.  

We also downloaded mRNA expression data from (Schmitter, Filkowski et al. 2006). The expression 

data before and after AGO2 protein knocking down in HEK293 was used to measure the down-

regulation of miRNAs and miRNA modules. This was because the knock-down of the AGO2 protein 

basically prevented the functions of all miRNAs, as AGO2 is an essential component of the RNA-

induced silencing complex that recognizes target mRNAs and loads miRNAs to target mRNAs 

(Bartel 2009).  

3.1.2.2 The Pipeline to Predict miRNA Modules  

We developed the following pipeline to predict miRNA modules (Figure 3.1): Starting from 18514 

experimentally validated target sites, we modified the ChIPModule approach (Ding, Cai et al. 2013) 
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to discover groups of miRNAs that co-bind at least S mRNAs; Next, we applied the binomial test to 

assess the statistical significance of every group of miRNAs identified above. Each significant group 

of miRNAs was called a miRNA module candidate; Finally, we predicted miRNA modules based on 

hypergeometric testing. A miRNA module was defined as a module candidate that significantly 

decreased the expression of their common mRNA targets than individual miRNAs contained in this 

candidate did. The details were in the following two sections.  

 

Figure 3-1 The pipeline to predict miRNA modules. A. MiRNA-mRNA interaction data from 

CLASH. Each line represents a target mRNA, each box represents a miRNA target site, with 

different shapes representing different miRNAs. B. Identify miRNA groups with their target sites 

frequently co-occurring in common mRNAs. C. Identify miRNA module candidates by binomial 

tests. D. Predict miRNA modules based on hypergeometric tests. 
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3.1.2.3 Predicting miRNA Module Candidates  

We modified ChIPModule (Ding, Cai et al. 2013) to discover miRNA module candidates. 

ChIPModule was developed to discover significantly co-occurring binding sites of a group of 

transcription factors (TFs) in input sequences. In brief, with all known motifs in a database, 

ChIPModule defines putative TF binding sites (TFBSs) in input sequences. It then identifies TF 

groups of variable sizes with frequently co-occurring TFBSs in input sequences by an effective tree-

based approach. Finally, ChIPModule assesses the statistical significance of each TF group with 

frequent co-occurring TFBSs by Poisson clumping heuristic (Hu, Hu et al. 2008) and output 

significant TF groups as TF modules. Because of its superior performance to other methods in TF 

module discovery (Ding, Cai et al. 2013), we applied a modified version of ChIPModule to miRNA 

module candidate discovery. 

 

We modified ChIPModule in two aspects. One was that we considered experimentally determined 

miRNA target sites instead of putative TFBSs (Ding, Cai et al. 2013). The other was that we 

calculated statistical significance of the co-occurrence of a group of miRNAs differently. Assume we 

observed a group of k miRNAs, all of which bound n of the 7390 mRNAs. We assessed the statistical 

significance of this miRNA group as follows: First, for each miRNA, we calculated its probability to 

have a target site in a randomly chosen mRNA, which was the ratio of the number of mRNAs 

containing the CLASH target sites of this miRNA to 7390. Second, we calculated the probability that 

this group of miRNAs bound a randomly chosen mRNA by assuming each miRNA bound the 

mRNA independently. That is, this probability was measured as the product of the k probabilities 

that each of the k miRNAs bound the mRNA. Finally, we calculated the binomial tail probability of 

observing n of the 7390 mRNAs containing target sites of all k miRNAs in this group as the 
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statistical significance of this group of miRNAs. With the tail probabilities for all groups of miRNAs 

that frequently co-bind their common mRNA targets, we applied the Q-value software (Storey and 

Tibshirani 2003) to output significant miRNA groups so that the false discovery rate (FDR) was 

controlled. The significant miRNA groups were considered as miRNA module candidates (Figure 3-

1). 

 

We applied this modified approach to output miRNA module candidates, with S=10 and FDR=0.05. 

S=10 referred to the requirement that all miRNAs in a module candidate shared at least 10 common 

target mRNAs. We also tried S=20 to predict candidates. All predicted candidates with S=20 were a 

subset of the predicted candidates with S=10, which suggested S=20 may be too stringent. We thus 

reported our analyses with S=10. 

3.1.2.4 Identifying miRNA Modules  

Given a module candidate comprising k miRNAs, all of which bound the same n of the 7390 

mRNAs, we determined whether it was a miRNA module by the following procedure (Figure 3-1). 

First, we calculated a fold change extent (FCE) score for the candidate and all its subsets with k-1 

miRNAs. The FCE score of a group of miRNAs was defined as the fraction of their common target 

mRNAs with fold changes larger than a pre-defined cutoff D, when the expression levels of genes 

before and after AGO2 protein knock-down were compared. We used three cutoffs of D, 

corresponding to the 99%, 95%, and 90% quartile of the distribution of the fold changes of the 7390 

mRNAs. Second, we checked whether the FCE score of this miRNA module candidate was larger 

than that of any subset of size k-1. Third, if this candidate had larger FCE scores than any subset, we 

assessed its significance of higher down-regulation of target genes than the k subsets by the 

following hypergeometric testing. Without loss of generality, we assumed that (i) the subset with the 
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largest FCE score had N common target mRNAs, among which M mRNAs had fold changes larger 

than D; and (ii) the fold changes of m out of the n target mRNAs of this candidate were larger than 

D. Under these assumptions, the significance of observing higher down-regulation of targets of the 

module than that of any subset was measured by a hypergeometric testing tail probability of 

observing at least m of n targets with large fold changes randomly chosen from the population of N 

targets with M targets of large fold changes. Finally, we assigned the module type of this candidate. 

If the significance at step three satisfied the required FDR of 0.05 (Storey and Tibshirani 2003), this 

candidate was claimed as a synergistic miRNA module. Otherwise, if the FCE score of the candidate 

was larger than that of any subset at step two, this candidate was a potential synergistic miRNA 

module. In all remaining cases, this candidate was considered as a non-synergistic miRNA module. 

The synergistic, potential, and non-synergistic miRNA modules were abbreviated as miRNA 

modules, potential modules, or non-synergistic modules below, respectively. 

 

With the above procedure, we predicted 193, 181, and 190 miRNA modules, using the 99%, 95%, 

and 90% quartile of the distribution of fold changes as D, respectively. More than 80% of the 

predicted miRNA modules with the three choices of D were shared by the three sets. For 

convenience, we reported our results based on the second choice of D (95%).  

3.1.2.5 Validating Predicted Candidates Especially the Predicted miRNA Modules 

To assess whether the predicted candidates especially the miRNA modules were likely functional, we 

studied the overlap of their target genes with known pathway genes or gene sets of known functions. 

For known pathway genes, we used pathways at http://www.broadinstitute.org/gsea/index.jsp. To 

evaluate the overlap significance, we used hypergeometric testing (Boyle, Weng et al. 2004). We 

also checked the order of target sites of different miRNAs in a predicted candidate as in previous 
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studies (Cai, Hou et al. 2010, Ding, Hu et al. 2014). We also searched literature to see whether a 

predicted module was supported as well. For each candidate, we searched in Google scholar to 

retrieve top 20 hits. For every hit, we manually checked whether all miRNAs contained in this 

candidate were reported to (i) bind the same targets; (ii) be active under the same experimental 

conditions (e.g. highly co-up-regulated in specific cancers); or (iii) be found in co-transfection 

experiments. If at least one type of evidence was found, this candidate was considered to be 

supported by literature.  

3.1.2.6 Comparing the Strength of Target Sites 

We compared the strength of target sites bound by predicted modules with that by individual 

miRNAs. The strength was measured by target site binding energy downloaded from the CLASH 

paper (Helwak, Kudla et al. 2013). The binding energy approximated the interaction strength of a 

miRNA and one of its target sites. The higher the energy was, the weaker the target site was. In brief, 

we treated the binding energy of target sites bound by predicted miRNA modules as samples of a 

random variable X1. We also obtained the samples of another random variable Z, which was the 

binding energy of the sites in mRNAs that were not bound by any predicted candidate. We then 

applied Wilcoxon rank-sum test to test the null hypothesis Z>X1 with the alternative hypothesis as 

Z<=X1 (Wilcoxon 1945). Similarly, we compared the strength of target sites of the potential modules 

with that of individual miRNAs. We also compared the strength of target sites of individual miRNAs 

in individual modules with the strength of target sites of the same miRNAs but not bound by any 

candidate.  
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3.1.2.7 Analyzing the Preferred Target Site Combinations of miRNA Modules 

We investigated the combinations of target sites a (potential) miRNA module preferred to bind. We 

had three possible combinations: all canonical sites (type 1), a mixture of canonical and 

unconventional sites (type 2), and all unconventional sites (type 3). For a (potential) miRNA module 

comprising k different miRNAs, the probability of the type 1 combination of target sites was pk, 

where p is the fraction of the number of canonical sites in the 18514 target sites. Similarly, the 

probability of the type 3 combination was (1-p)k. The probability of the type 2 combination was 1- 

pk - (1-p)k. We assume that we observed this (potential) module targeting n mRNAs, m1, m2, and 

m3 of which had the type 1, type 2, and type 3 target site combinations, respectively. We calculated 

the significance of this (potential) module preferring the type 1 combination as the binomial tail 

probability of observing at least m1 successful experiments in n experiments, each of which had a 

success rate of pk. Similarly, we calculated the significance of this (potential) module preferring 

other types of combinations.  

We analyzed five different location combinations of target sites: all sites in CDSs (type 1), all sites in 

3’ UTRs (type 2), all sites in 5’ UTRs (type 3), at least one 3’ UTR site and another site not from 3’ 

UTR (type 4), and all other sites (type 5). We did similar tests to determine whether a (potential) 

miRNA module preferred a specific combination of site locations. 

3.1.2.8 Inferring Preferred Distance Ranges of Adjacent Target Sites of miRNA Modules 

We defined preferred distance ranges of adjacent target sites of a miRNA module as follows: First, 

we divided the distances of adjacent target sites of a miRNA module into 10 nucleotides long bins. 

Second, we calculated the p-value of the enrichment of distances in each bin, by assuming the 

distances were evenly distributed across bins. If the p-value is small (FDR=0.05), the bin was 

considered as significantly enriched. Third, we extended each significant bin to obtain a region with 
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the smallest p-value of enrichment and defined this region as a preferred region. More precisely, for a 

significant bin, say A, we considered combining A with its left neighboring bin. We calculated the p-

value of the enrichment of distances in these two bins under the same uniform distribution 

assumption. Similarly, we considered the two bins comprising A and its right neighboring bin. We 

then chose the extension with the smaller p-value, for instance, the extension to the left. If this 

smaller p-value is small (FDR=0.05) and smaller than the p-value of A, we extended A into a 

preferred region comprising two bins. We repeated this procedure until no more extension could be 

made. Finally, we reported all non-overlapping preferred regions as the preferred distance ranges of 

adjacent target sites of this miRNA module. Similarly, we defined the preferred distance ranges of 

adjacent target sites of other types of candidates.   

3.1.3 Results 

3.1.3.1 Predicted miRNA Modules Were Supported by Functional Evidence 

With FDR=0.05 (Storey and Tibshirani 2003), we discovered 507 miRNA module candidates. Each 

candidate consisted of 2 to 5 miRNAs, with an average of 2.72 miRNAs. The number of candidates 

with 2, 3, 4, and 5 miRNAs was 174, 300, 32, and 1, respectively. All miRNAs in a candidate shared 

at least 10 common mRNA targets.  

 

We investigated whether the 507 candidates significantly down-regulated their target mRNAs more 

than any subset of the contained miRNAs (Material and Methods). We found 181 candidates down-

regulated their target mRNAs significantly more than their contained subsets (FDR=0.05). We 

considered these 181 candidates miRNA modules. We also noticed that 306 candidates down-

regulated their target mRNAs more than their contained subsets, with or without satisfying the 
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required FDR of 0.05. We considered these 306 candidates potential miRNA modules, which 

included the above 181 modules. The remaining 201 candidates, which did not down-regulate their 

target genes more than their subsets, were defined as non-synergistic modules. 

 

We explored whether the 507 candidates, especially the 181 miRNA modules, were functional. We 

studied the overlap of target mRNAs of a candidate with genes in a known pathway or annotated 

with a common gene ontology (GO) term, as in previous studies (Ambros 2004, Xu, Li et al. 2011). 

The rationale was that if a candidate was functional, its target genes likely significantly overlap with 

genes in a known pathway, or genes annotated with a specific GO term (Ambros 2004, Xu, Li et al. 

2011). We found that the function of the majority of the predicted candidates, especially the 

predicted miRNA modules, was supported (Table 3.1). For instance, the target mRNAs of 68.4% of 

the 507 candidates significantly shared at least one GO term. To assess the statistical significance of 

the pathway and GO support, we generated 507 random miRNA groups, each of which consisted of 

miRNAs randomly chosen from the 399 miRNAs mentioned in the CLASH paper and contained the 

same number of miRNAs as the corresponding predicted candidate. We found that target mRNAs of 

only 18 random miRNA groups significantly overlap with genes in a pathway, and target mRNAs of 

only 6 random miRNA groups shared a GO term (Table 3.1).  

 

In addition, we studied the order of target sites of miRNAs in the same predicted candidates. We 

found that 34.3% of the 181 miRNA modules, 33.7% of the 306 potential modules, and 29% of the 

507 candidates contained miRNA pairs with statistically significant orders (Table 3.1, FDR=0.05). 

For instance, three miRNAs MIR-222, LET-7B, and MIR-615-3P formed a miRNA module. MIR-

615-3P preferred to bind at the 5’ of the target sites of MIR-222 (FDR=0.0286), which preferred to 
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bind at the 5' of the target sites of LET-7B (FDR=6.1E-4). In contrast, no random miRNA group had 

preferred orders. 

 

We also did a literature search to check whether the predicted candidates was supported. We found 

that 99 of the 507 candidates and 32 of the 181 miRNA modules were supported by literature (Table 

3.1). By comparison, we did literature search for the 507 random miRNA groups and found that 11 

groups were supported.  

Table 3.1 Support of the predicted miRNA module candidate 

Module 

types 

# (%) of 

combinations 

supported by 

Pathway 

# (%) of 

combinations 

supported by 

GO 

# (%) of 

combinations 

supported by 

literature 

Significance of 

literature  

support  

# (%) of 

combinations 

supported by 

order 

Total # (%) of 

combinations 

supported  

181 

synergistic 

modules 

125 (69.0%) 165 (91.2%) 32 (17.7%) 1.87e-12 62 (34.3%) 178 (98.3%) 

306 possible 

modules 

211 (69.0%) 274 (89.5%) 57 (16.8%) 0 103 (33.7%) 298 (97.4%) 

201 non-

synergistic 

modules 

136 (67.7%) 174 (86.6%) 42 (20.9%) 0 44 (21.9%) 194 (96.5%) 

507 

predicted  

candidates 

347 (68.4%) 448 (88.4%) 99 (19.5%) 0 147 (29.0%) 492 (97%) 

 

The supporting rate of 11/100 was likely over-estimated, as the 399 miRNAs were known to be 

active under the same conditions and may actually play certain roles together. Even given the over-
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estimated supporting rate of random miRNA combinations, the chance of observing the number of 

supported candidates was 0 (Table 3.1).  

3.1.3.2 Target Sites of miRNA Modules Were Weaker Compared with Other Target Sites 

We compared the strength of target sites bound by predicted (potential) miRNA modules with that by 

individual miRNAs. Target sites of the predicted miRNA modules had significantly higher energy 

than target sites bound by individual miRNAs (Wilcoxon rank-sum p-value 3.0E-19). Similarly, this 

was true for target sites of the potential miRNA modules (p-value 4.6E-15). Target sites of (potential) 

miRNA modules were thus weaker than target sites not bound by any of the 507candidates. 

 

We also compared the strength of target sites of the predicted modules and the potential modules 

with that of non-synergistic modules. Target sites of the 181 miRNA modules had significantly 

higher energy than target sites bound by the 201 non-synergistic modules (p-value 1.6E-56). 

Similarly, target sites of the 306  

 

potential modules had significantly higher energy than those bound by the 201 non-synergistic 

modules (p-value 1.7E-87).Therefore, target sites of the (potential) miRNA modules were weaker 

than those of the 201 non-synergistic modules, which implied that there was a difference between 

candidates that down-regulated target mRNAs more than their subsets and candidates that did not.  

 

We further compared the strength of target sites of individual miRNAs bound by (potential) miRNA 

modules with that of target sites of the same miRNAs not bound by any of the 507 candidates. For 42 

of the 56 miRNAs in the 181 miRNA modules, their target sites were significantly weaker compared 

with their target sites not bound by any of the 507 candidates (FDR=0.05). On the contrary, for only 



www.manaraa.com

84 

 

4 of the 56 miRNAs, their target sites were significantly stronger than those not bound by any 

candidate (FDR=0.05), suggesting that for the majority of miRNAs, target sites bound by modules 

were not as strong as target sites not bound by any candidate. A similar observation was made for the 

306 potential modules, for which target sites of 51 of the 68 miRNAs bound by modules were 

weaker and target sites of only 7 of the 68 miRNAs bound by modules were stronger (FDR=0.05). 

Therefore, consistent with the above pooled analyses of target sites of all (potential) modules, target 

sites of the majority of miRNAs bound by individual (potential) modules were weaker (Figure 3-2).      

 
 

Figure 3-2  The target site strength, site combinations, and distances of adjacent sites preferred by 

miRNA modules. A. Percentages of miRNAs in modules preferring sites of different strengths. B. 

Percentages of preferred target site combinations. C. Percentages of preferred distance ranges. 

3.1.3.3 Most miRNA Modules Preferred to Bind Unconventional Target Sites 

We investigated the preferred combinations of canonical and unconventional target sites of a 

(potential) miRNA module. For the 181 miRNA modules, 99, 5, and 6 miRNA modules preferred 

target sites composed of all unconventional sites (type 1), a mixture of canonical and unconventional 

sites (type 2), and all canonical sites (type 3), respectively (FDR=0.05). Similarly, for the 306 

potential miRNA modules, 169, 12, and 10 potential miRNA modules preferred target sites of types 

1, 2, 3, respectively (FDR=0.05). It was thus evident that more than half of the (potential) miRNA 
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modules preferred to bind unconventional sites instead of a mixture of canonical and unconventional 

sites. 

 

The above analyses only showed that most (potential) miRNA modules preferred to bind mRNAs 

containing only unconventional sites. It was not clear whether target sites in the majority of mRNA 

targets of a (potential) miRNA module were composed of only unconventional sites. We thus 

checked the (potential) miRNA modules which had more than 70% of mRNA targets that contained 

only unconventional sites. We found that 116 of the 181 (64.1%) miRNA modules had more than 

70% of their mRNA targets with only unconventional sites, and 198 of the 306 (64.7%) potential 

miRNA modules had more than 70% of mRNA targets with only unconventional sites. Therefore, the 

combination of all unconventional target sites was the most dominant combination found in target 

mRNAs of most (potential) miRNA modules. 

 

Since unconventional sites included non-canonical sites and other sites, we explored whether miRNA 

modules prefer to bind non-canonical sites. For the 181 significant modules, only 52 (28.7%) 

modules significantly preferred all non-canonical sites. Moreover, only 4 modules had more than 

70% of mRNA target with only non-canonical sites. Similarly, for 306 potential synergistic modules, 

only 82 (26.8%) modules significantly preferred all non-canonical sites. Only 5 modules had more 

than 70% of mRNA target with only non-canonical sites. It was thus evident that miRNA modules 

preferred unconventional sites instead of non-canonical unconventional sites (Figure 3-2).  

3.1.3.4 Most miRNA Modules Preferred to Bind the First or the Last Exons 

We studied the location combinations of target sites of (potential) miRNA modules (Material and 

Methods). We found that most (potential) miRNA modules preferred to bind target sites in CDSs 
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instead of a mixture of CDSs and UTRs. For the 181 miRNA modules, 127, 7, 2, and 2 miRNA 

modules preferred target sites all in CDSs (type 1), all in 3’ UTRs (type 2), all in 5’ UTRs (type 3), 

and in both 3’ UTRs and other locations (type 4), respectively (FDR=0.05). Similarly, for the 306 

potential miRNA modules, 210, 16, 3, and 2 potential miRNA modules preferred target sites of types 

1, 2, 3, and 4, respectively. In contrast, 1, 0, 0, and 0 of the 507 random miRNA groups preferred 

target sites of types 1, 2, 3, and 4, respectively. 

 

Because the majority of (potential) miRNA modules preferred to bind only in CDSs, we further 

investigated whether target sites in an mRNA target of a (potential) module were always in the same 

exons, adjacent exons, or others. We found that the majority of the (potential) miRNA modules 

prefer to bind the same exons. For instance, for 150 of the 181 miRNA modules, more than 50% of 

their target sites in a target mRNA were in the same exon. Similarly, for 256 of the 306 potential 

modules, more than 50% of their target sites in a target mRNA were in the same exon. In contrast, 

the 507 random miRNA groups did not have exon binding preference, of which only 14 random 

miRNA groups had more than 50% of their target sites in the same exon in an mRNA.  

 

Since most target sites in a target mRNA of a (potential) module were in the same exon, we also 

studied whether the target sites of a (potential) module preferred a specific type of exons. Indeed, we 

found that the first and the last exon of the target mRNAs were preferred to be bound by the 

(potential) miRNA modules. For instance, 64.9% of target sites of the 181 miRNA modules that were 

in the same exons were in either the first exons or the last exons. Similarly, 67.3% of target sites of 

the 306 potential miRNA modules that were in the same exons were in either the first exons or the 
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last exons. Therefore, we concluded that most (potential) miRNA modules preferred to bind one 

exon in the target mRNAs, either the first or the last exons.    

3.1.3.5 MiRNA Modules Preferred Target Sites within Certain Ranges 

With the experimentally determined target sites, we studied the preferred distance range of the 

adjacent target sites of miRNA modules. We defined the preferred distance ranges of target sites of 

the 181 miRNA modules, 306 potential miRNA modules, 202 non-synergistic modules, and the 507 

module candidates, respectively (Table 3.2). For each of the four types of miRNA combinations, 

more than 70% of combinations had preferred distance ranges. The distribution of the preferred 

distance ranges of the 181 miRNA modules and that of the 306 potential modules were more similar 

to each other, compared with that of the 202 non-synergistic modules (Figure 3-3). For all four types 

of miRNA combinations with preferred distance ranges, more than 90% of combinations in each type 

had all preferred distance ranges <360 nucleotides (Figure 3-3 and Table 3.2). In contrast, 20 (3.9%) 

of the 507 random miRNA groups had preferred distance ranges, 10 (50.0%) of which had preferred 

distance ranges <360 nucleotides. 

 

We tested whether two previously known preferred ranges, 10-130 nucleotides and 13-35 

nucleotides, were enriched. For 44 (24.3%) miRNA modules, 90 (29.4%) potential miRNA modules, 

and 69 (34.3%) non-synergistic modules, the 10-130 range was enriched (Binomial test, FDR=0.05). 

For 17 (9.4%) miRNA modules, 32 (10.5%) potential miRNA modules, and 16 (8.0%) non-

synergistic modules, the 13-35 range was enriched (Binomial test, FDR=0.05). If we pooled the 

distances of target sites of all 181 miRNA modules together, the 10-130 and 13-35 ranges were 

enriched (p-value=0 in both cases). Similarly, the two ranges were enriched in distances of target 

sites of the potential modules, the non-synergistic modules, and the 507 module candidates. Although 
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the two ranges of distances were enriched, the majority of distances of adjacent target sites of 

modules or module candidates were not within the two ranges (Table 3.2). For instance, in the 181 

miRNA modules, more than 74.1% of distances of adjacent target sites of miRNA modules were 

longer than 130 nucleotides. Moreover, 85 (47.0%) miRNA modules had preferred distance ranges 

larger than 130 nucleotides (Table 3.2 and Figure 3-3). Future work may need to investigate how 

miRNAs with target sites in such large distance ranges interact.  

 
Figure 3-3 MiRNA modules preferred target sites within certain ranges 

3.1.3.6 Adjacent Unconventional Target Sites of miRNA Modules Preferred Shorter Distances than 

Other Types of Adjacent Target Sites 

We studied the difference between the distances of adjacent unconventional target sites of a module 

and those of other types of adjacent target sites of the same module. For every predicted miRNA 

module, we collected the distances of adjacent unconventional target sites in each target mRNA. That 

is, we only considered target mRNAs that contained only unconventional sites of this module. We 

also collected distances of other target sites of this module. For 150 of the 181 miRNA modules, we 
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had at least 5 distances collected for each of the two types of distances. We tested the null hypothesis 

that the distances of adjacent unconventional sites were shorter than those of other types. We only 

rejected the null hypothesis in 5 cases based on Wilcoxon rank-sum test (FDR=0.05). We further 

tested the null hypothesis that the distances of adjacent unconventional sites were longer than those 

of other types. We rejected the null hypothesis in 31 cases (FDR=0.05). We concluded that in 6 times 

more cases, the distances of adjacent unconventional target sites seemed shorter than that of other 

types of adjacent target sites. 

 

The sample size may be too small for the above analyses using individual miRNA modules. 

Therefore, we considered distances of adjacent unconventional sites of all miRNA modules together 

instead of individual miRNA modules. For the null hypothesis that the distances of adjacent 

unconventional sites were shorter than those of other types, we accepted the null hypothesis (p-

value>0.99). For the null hypothesis that the distances of adjacent unconventional sites were longer 

than those of other types, we rejected the null hypothesis (p-value=9.7E-14). This pooled analysis 

showed that the distances of adjacent unconventional sites were indeed shorter.   

 

We also did similar analyses for the 306 potential modules. We obtained similar results. That is, for 

the analysis based on individual potential modules, in 3 times more cases (41 versus 12), the 

distances of adjacent unconventional sites were shorter than the distances of other types of sites. In 

the pooled analysis, for the null hypothesis that the distances of adjacent unconventional sites were 

shorter than those of other types, we accepted the null hypothesis (p-value>0.99). For the null 

hypothesis that the distances of adjacent unconventional sites were longer than those of other types, 
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we rejected the null hypothesis (p-value=5.0E-16). Therefore, it was evident that adjacent 

unconventional target sites preferred shorter distances than other types of adjacent target sites. 

Table 3.2 Preferred distance ranges of adjacent target sites of miRNA combinations 

Module types % of modules 

with 

preferred 

distance 

ranges 

% of modules 

with preferred 

distance ranges 

overlapping 

with 10-130nt 

%  of modules 

with preferred 

distance ranges 

overlapping 

with 13-35nt 

% of  

adjacent 

distances 

<130nt  

% of modules 

with preferred 

distance 

ranges>130nt 

% of modules 

with preferred 

distance 

ranges< 360nt 

181 

significant 

synergistic 

modules 

132/181 

=72.9% 

44/181 

=24.3% 

17/181 

=9.4% 

25.9% 85/181 

=47.0% 

119/132  

=90.2%  

306 possible 

synergistic 

modules 

220/306 

=71.9% 

90/306 

=29.4% 

32/306 

=10.5% 

28.1% 142/306 

=46.4% 

198/220 

=90.0% 

201 non-

synergistic 

modules 

148/201 

=73.6% 

69/201 

=34.3% 

16/201 

=8.0% 

27.4% 105/201 

=  52.2% 

136/148 

=91.9% 

507 all 

predicted 

modules 

368/507 

=72.6% 

159/507 

=31.4% 

48/507 

=9.5% 

27.8% 247/507 

=48.7% 

334/368 

=90.1% 

507 random 

miRNA 

groups 

20/507 

=3.9% 

4/507 

=0.8% 

2/507 

=0.4% 

10.7% 16/507 

=3.2% 

10/20 

=50.0% 

3.1.4 Discussion  

We studied miRNA modules based on experimentally determined miRNA target sites. We predicted 

181 miRNA modules and 306 potential miRNA modules. We demonstrated that miRNA modules 

preferred to bind weak sites and favored a combination of all unconventional sites. We also observed 

that miRNA modules preferred to bind in CDSs and favored the first and the last exons. We 

confirmed that more than 70% of miRNA modules bound sites within specific ranges, with 
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enrichment in two previously known ranges. However, many more adjacent sites bound by miRNA 

modules were >130 nucleotides apart. We further showed that unconventional target sites of miRNA 

modules were often within shorter distances than other combinations of target sites. Our study shed 

new light on miRNA binding. 

 

The majority of adjacent target sites of miRNA modules were >130 nucleotides apart, which 

contradicted with previous observations (Doench and Sharp 2004, Kloosterman, Wienholds et al. 

2004, Vella, Choi et al. 2004, Brennecke, Stark et al. 2005, Saetrom, Heale et al. 2007). To 

understand what resulted in different observations, we focused on target sites of the 181 miRNA 

modules in 3’ UTRs. We found even when we considered only target sites in 3’ UTRs, more than 

75% of adjacent target sites of miRNA modules were >130 nucleotides apart. We also predicted 

miRNA module candidates using only the 6096 CLASH target sites in 3’ UTRs and then studied the 

distances of adjacent target sites of these candidates. We still observed that the majority of adjacent 

target sites of these candidates were >130 nucleotides apart. Therefore, the different observations 

were unlikely because we used target sites in entire mRNA regions while previous studies used only 

target sites in 3’ UTRs. Instead, it may be due to the small number of experimentally determined 

sites in previous experimental studies and the limited quality of predicted sites in the previous 

computational study, compared with the 18514 high-quality experimentally determined sites we 

used. 

We predicted (potential) miRNA modules on the condition that they down-regulated target genes 

significantly more than some of their miRNA subsets. We further checked whether these (potential) 

modules down-regulated their target genes significantly more than any subset contained in the 



www.manaraa.com

92 

 

modules. We confirmed that for all (potential) miRNA modules, their target genes were significantly 

more down-regulated than the target genes of any of their subsets.  

 

We discovered 201 non-synergistic modules. The non-synergistic modules may also play important 

roles in regulating target genes, as supported by GO and pathway analyses, order preference, and the 

literature. Moreover, these non-synergistic modules may be competitive miRNA modules that are 

worth further investigation (Khan, Betel et al. 2009).  
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3.2 TarPmiR: a new approach for microRNA target site prediction 

3.2.1 Background 

The prediction of microRNA (miRNA) target sites is critical in understanding miRNA function and 

their involvement in various biological processes (Lewis, Shih et al. 2003). MiRNAs are short 

noncoding RNAs that bind and regulate their target mRNAs in a variety of biological processes, such 

as cell development, differentiation, proliferation, and apoptosis pathways (Sassen, Miska et al. 2008, 

Schanen and Li 2011). The binding of miRNAs to their target mRNAs degrades the target mRNAs 

and/or prevents the target mRNAs from being translated into proteins, and thus modulates gene 

expression at the post-transcriptional level (Friedman, Farh et al. 2009, Muljo, Kanellopoulou et al. 

2010, Axtell, Westholm et al. 2011, Wang, Li et al. 2011). By identifying miRNA target sites, the 

target mRNAs and the potential functional roles of miRNAs may thus be discovered. 

 

Several features are commonly believed to be important for predicting miRNA target sites. Among 

them, seed match, the exact sequence matching between the positions 2 to 7 of an miRNA and a 

segment of 6 nucleotides (nt) long in target mRNAs, has been reported to be essential for miRNA-

mRNA binding (Brennecke, Stark et al. 2005). Accessibility, which measures how likely a region in 

an mRNA sequence is “open” or accessible for an miRNA to bind, is well known to be important for 

functional miRNA-mRNA binding (Kertesz, Iovino et al. 2007). In addition, other features such as 

AU content (Grimson, Farh et al. 2007), folding energy (Enright, John et al. 2004, Grimson, Farh et 

al. 2007, Yousef, Jung et al. 2007), and conservation (Helwak, Kudla et al. 2013) are also regarded as 

informative indicators of functional miRNA-mRNA bindings. 
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Dozens of tools for miRNA target site prediction have been developed in the past decade, based on 

different subsets of the aforementioned features (Peterson, Thompson et al. 2014). For instance, 

miRanda (Enright, John et al. 2004) utilizes the features of seed match, conservation and free energy 

for target site prediction. TargetScan (Grimson, Farh et al. 2007, Friedman, Farh et al. 2009) uses 

seed match, pairing of mRNAs with 3’ of miRNAs, local AU content, etc, for target site 

identification. In addition to these traditional miRNA target site prediction tools, recently, several 

tools based on next-generation sequencing technologies have been developed (Vejnar and Zdobnov 

2012, Chou, Lin et al. 2013, Wang, Xie et al. 2014). For instance, miRTarCLIP (Chou, Lin et al. 

2013) identifies miRNA target sites from the data generated by high-throughput sequencing of RNA 

isolated by crosslinking immunoprecipitation (HITS-CLIP) experiments (Licatalosi, Mele et al. 

2008, Chi, Zang et al. 2009) and photoactivatable-ribonucleoside-enhanced crosslinking and 

immunoprecipitation (PAR-CLIP) experiments (Hafner, Landthaler et al. 2010). 

 

Despite the existence of dozens of computational methods, computational identification of miRNA 

target sites remains a challenging problem partially due to our limited understanding of the 

characteristics of miRNA target sites. For instance, although matching seed is not always sufficient 

for a functional miRNA-mRNA interaction (Brennecke, Stark et al. 2005, Didiano and Hobert 2006), 

it has been thought to be necessary for most animal miRNA-mRNA binding. However, studies have 

shown non-canonical pairings that allow G:U wobbles and even mismatches can be functional 

(Brennecke, Stark et al. 2005, Didiano and Hobert 2006). Recent cross-linking ligation and 

sequencing of hybrids (CLASH) experiments (Helwak, Kudla et al. 2013) have further shown that 

seed match, including canonical and non-canonical seed-matching, is not required for certain 

miRNA-mRNA interactions.  
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The CLASH experiments (Helwak, Kudla et al. 2013) provide an unprecedented opportunity to 

advance our understanding of miRNA target sites and to develop better computational methods for 

miRNA target site prediction. Compared with other high-throughput experimental approaches such 

as HITS-CLIP (Licatalosi, Mele et al. 2008, Chi, Zang et al. 2009) and PAR-CLIP (Hafner, 

Landthaler et al. 2010) that identify miRNA target sequences only, CLASH experiments provide 

both miRNAs and their corresponding target sequences. With thousands of target sequences for 

dozens of miRNAs in one CLASH experiment, new features of miRNA target sites may be inferred 

and better computational methods for miRNA target site prediction may be developed.  

 

In this study, we developed a new approach for miRNA target site prediction called TarPmiR (Target 

Prediction for miRNAs). TarPmiR applies a random-forest-based approach to integrate six 

conventional features and seven new features to predict miRNA target sites. These features were 

learned from the only CLASH dataset in mammal that is made publically available by Helwak, et al. 

(Helwak, Kudla et al. 2013). By cross-validation, we showed that TarPmiR had an average recall of 

0.543 and an average precision of 0.181. Tested on three independent datasets, including two human 

PAR-CLIP datasets and one mouse HITS-CLIP dataset, we demonstrated that TarPmiR identified 

more than 74.2 % of known miRNA target sites in each dataset. Compared with three existing 

approaches, we found that TarPmiR is superior to existing approaches, in terms of both higher recall 

and higher precision. The TarPmiR method is implemented in a python package, which is freely 

available at http://hulab.ucf.edu/research/projects/miRNA/TarPmiR/.  
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3.2.2 Materials and Methods 

3.2.2.1 Training and testing data 

We downloaded 18514 miRNA target sites of 399 miRNAs from CLASH experiments (Helwak, 

Kudla et al. 2013). These target sites were considered as positive target sites. We also generated 

18514 corresponding negative or “false” target sites in a manner similar to a previous study (Li, Kim 

et al. 2014), with the following criteria: (1) A positive site and its corresponding negative site are on 

the same mRNA; (2) The positive and its corresponding negative site has similar CG dinucleotide 

frequency; (3) The positive and its corresponding negative site has similar number of the nucleotide 

G; (4) A negative site does not overlap with any positive site; (5) With multiple candidate negative 

sites in an mRNA, select the one with the lowest folding energy.  

 

We performed cross-validation to determine which machine learning method to be used in TarPmiR 

and to assess the accuracy of TarPmiR. To determine which method to be used, we randomly chose 

10000 positive sites and 10000 negative sites for training and the remaining positive and negative 

sites for testing. We repeated this process five times and selected the method with the F2 scores. To 

test TarPmiR, we used the same five training datasets. For a corresponding testing dataset, we input 

the mRNA sequences that contain the corresponding remaining 8514 positive sites and the remaining 

8514 negative sites for testing. The final model used to predict miRNA target sites by TarPmiR in 

this study was trained using the first set of randomly chosen 10000 positive sites and 10000 negative 

sites.  

 

We also collected two independent PAR-CLIP datasets from the human HEK293 cell line for testing. 

PAR-CLIP datasets were used because a large number of potential miRNA target regions called 
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crosslink-centered regions (CCRs) could be obtained from PAR-CLIP. CCRs were considered as 

positive target sites. One PAR-CLIP dataset with 17310 CCRs was from (Hafner, Landthaler et al. 

2010). Only 16041 of these CCRs were able to be mapped to mRNAs and resulted in 10023 target 

mRNAs. In this dataset, 60 miRNAs accounted for more than 90% of total miRNA reads and 120 

miRNAs accounted for 99% of total miRNA reads. In other words, depending on the cutoff to define 

active miRNAs, there were mainly 60 or 120 miRNAs related to these 17310 CCRs. The other PAR-

CLIP dataset with 44497 CCRs was obtained from (Kishore, Jaskiewicz et al. 2011). Only 43251 of 

the 44497 CCRs were able to be mapped to mRNAs and resulted in 17794 target mRNAs. Same as 

the first PAR-CLIP dataset, depending on the cutoff to define active miRNAs, there were mainly 60 

or 120 related miRNAs in this dataset. 

 

To test TarPmiR on general datasets, we also compared the TarPmiR predictions with the 

experimentally validated miRNA targets by general methods in TarBase 6.0 (Vergoulis, Vlachos et 

al. 2012) There are 15616 POSITIVE TarBase 6.0 miRNA-mRNA interactions in human. We choose 

the top 100 and 50 miRNAs, which have the largest number of interactions in TabBase 6.0 for 

further analyses.  The rationale to choose top miRNAs is that we have more experimentally validated 

target mRNAs of these miRNAs and thus can assess the accuracy of TarPmiR and other tools better. 

The top 100 and 50 miRNAs in TarBase 6.0 accounts for 15552 (99.7%) and 15386 (98.5%) of 

human TarBase 6.0 interactions, respectively. There are 9869 and 9823 mRNAs associated with 

these 100 and 50 top miRNAs, respectively. We ran TarPmiR and other tools with the 100 or 50 

miRNAs and the corresponding mRNAs they interact as input to predict miRNA target sites.  

 



www.manaraa.com

98 

 

In addition to the human datasets, we collected an independent HITS-CLIP dataset from the mouse 

cortex cell (Chi, Zang et al. 2009). This dataset provided an Argo-miRNA-mRNA ternary interaction 

map related to 20 miRNA families, 2953 mRNAs and 11080 miRNA-mRNA interactions. We 

further downloaded the corresponding 119 miRNAs from the 20 miRNA families from miRBase 

(Griffiths-Jones, Grocock et al. 2006).  

3.2.2.2 Potential features considered 

We considered the following 18 features of miRNA target sites in miRNA-mRNA duplexes: (1) 

Folding energy; (2) Seed match; (3) Accessibility; (4) AU Content; (5) Stem conservation; (6) 

Flanking conservation; (7) Difference between stem and flanking conservation; (8) m/e motif; (9) 

The total number of paired positions; (10) The length of the target mRNA region; (11) The length of 

the largest consecutive pairs; (12) The position of the largest consecutive pairs relative to the miRNA 

5’; (13) The length of the largest consecutive pairs allowing 2 mismatches; (14) The position of the 

largest consecutive pairs allowing 2 mismatches; (15) The number of paired positions at the miRNA 

3’ end, where 3’ miRNA end was defined as the last 7 positions of the miRNA; (16) The total 

number of paired positions in the seed region and the miRNA 3’ end; (17)The difference between the 

number of paired positions in the seed region and that in the miRNA 3’ end; and (18) Exon 

preference (Ding, Li et al. 2015). The first seven features had been used in existing tools (Peterson, 

Thompson et al. 2014), we thus considered them as conventional features. Remaining features that 

had not been commonly used by miRNA-target prediction tools were defined as ‘new’ features. 

 

The detailed definition of all 18 features and how to calculate their values are provided in the 

http://hulab.ucf.edu/research/projects/miRNA/TarPmiR/download/Supp/S1.docx. We briefly explain 

the m/e motif feature here, as it is not as self-evident as others. The m/e motif describes how different 
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positions in miRNAs match the corresponding positions in target sites. Here two positions match 

means that nucleotides at the two positions are complement to each other. For instance, nucleotides at 

positions in miRNA seed regions tend to match the nucleotides at the corresponding positions in 

target sites and nucleotides at positions in other miRNA regions tend to form mismatches or bulges 

with the corresponding positions in target sites. We thus have a sequential pattern composed of two 

letters “m” and “e” to describe preferred matching and non-matching positions, respectively. To 

calculate the m/e scores, for each position in miRNAs, we calculate a probability ip that this position 

matches the corresponding position in target sites by using all positive target sites in the training 

dataset. The m/e motif score of a potential target site is calculated as 



x

i

ip
x

score
1

log
1 , where x 

is the length of the miRNA and x is smaller than 24. 

3.2.2.3 Four computational methods for feature selection 

Not all of the aforementioned 18 features are effective for target site prediction. To select important 

features, we applied the following four machine learning methods: step-wise logistic regression 

(Ralston and Wilf 1960), least absolute shrinkage and selection operator (LASSO) (Tibshirani 1996), 

randomized logistic regression (Meinshausen and Bühlmann 2010) and random forests (Svetnik, 

Liaw et al. 2003). The step-wise logistic regression repeatedly eliminates the least significant feature 

until all significant features are found, which is performed by using the GLM package in R 

(http://data.princeton.edu/R/glms.html). LASSO constructs a linear model and shrinks the 

coefficients of non-important features to zero. All features with non-zero regression coefficients are 

'selected' as important features. We used the glmnet package (http://cran.r-

project.org/web/packages/glmnet/index.html) in R for the LASSO analysis. The randomized logistic 

regression randomly chooses a portion of the training samples and performs the logistic regression to 

http://data.princeton.edu/R/glms.html
http://cran.r-project.org/web/packages/glmnet/index.html
http://cran.r-project.org/web/packages/glmnet/index.html
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select significant features. It repeats this procedure many times and counts the number of times each 

feature is selected, which is regarded as the importance of the features. The randomized logistic 

regression was performed with the scikit-learn package (http://scikit-learn.org/stable/) in python. The 

random forests method grows many classification trees and assigns a new object to the class most 

trees vote for this object. We used the random forest model from sklearn package (http://scikit-

learn.org/stable/) in python. Each of the four methods has been applied to select features in previous 

studies (Yeo, Cameron et al. 1995, Kokaly and Clark 1999, Chou, Tiu et al. 2001, Kim and Kim 

2004, Chen and Lin 2006, Díaz-Uriarte and De Andres 2006, Saeys, Inza et al. 2007, Ma and Huang 

2008)  and demonstrated good performance in feature selection. We claim a feature as an important 

feature if at least two of the four methods consider this feature important. By applying the four 

methods to the training data, we selected 13 important features (Section 3.1). 

3.2.2. 4 TarPmiR, a random-forest based approach for miRNA target site prediction 

With the 13 selected features, we developed a random-forest based approach called TarPmiR for 

miRNA target site prediction. We chose the random forests method because we applied the above 

four approaches to the aforementioned training and testing datasets and found that random forests 

gave the best performance (Section 3.2).  

 

TarPmiR predicts miRNA target sites in three steps with the input of a set of miRNAs and a set of 

mRNAs. First, TarPmiR generates candidate target sites based on seed match or minimal folding 

energy (Enright, John et al. 2004, Grimson, Farh et al. 2007, Yousef, Jung et al. 2007). For a given 

miRNA, TarPmiR scans an mRNA sequence with the seed region of the miRNA (positions 2-7) to 

find perfect seed-matching sites. These sites are defined as the first set of candidate target sites. In 

addition, TarPmiR applies RNA-duplex from the Vienna RNA package (Hofacker 2003) to obtain 

http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
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the top target sites with the lowest folding energy. These energy-based sites are defined as the second 

set of candidate target sites. The combination of seed match and folding energy helps TarPmiR to 

pick up almost all true target sites from the beginning. Second, for each candidate target sites, 

TarPmiR calculates the values of the 13 selected features. Finally, TarPmiR applies the trained 

random-forest based predictor to predict target sites. The output of the random-forest model is the 

predicted probability that a candidate target site is a true target site. We have compared nine 

probability cutoffs to define target sites using the F2 score, since we put more emphasis on the recall 

than the precision. The cutoffs 0.5 and 0.6 have almost the similar F2 scores, while the cutoff 0.5 has 

the largest recall. Therefore, we used 0.5 for the following analyses. We provide a parameter –p in 

TarPmiR, users can choose other cutoffs based on their own needs.   

3.2.2. 5 Comparisons with other methods 

We compared TarPmiR with the following methods: targetScan (8,13), miRanda (9), and miRmap 

(Vejnar and Zdobnov 2012, Vejnar, Blum et al. 2013). The targetScan and miRanda are two of the 

most widely used miRNA target prediction tools. We used the following commands to run them: perl 

targetscan.pl <miRNA.> <mRNA> <targetscan_out>; perl targetscan_60_context_scores.pl 

<miRNA> <mRNA> <targetscan_out> <targetscan_context_score_out>; and miranda <miRNA> 

<mRNA> -sc 120 –en 1. MiRmap is a recently developed tool, which takes high throughput 

sequencing data as input to predict miRNA target sites. MiRmap provides a python library and users 

can write a script to output miRmap predictions with the functions in the library. We used similar 

parameters as in (Vejnar and Zdobnov 2012) when running miRmap.  
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3.2.3 Results 

3.2.3.1 All But One Conventional Features and Seven New Features Were Selected by Different 

Approaches.  

We applied four approaches to select important features from the 18 potential features. Each 

approach selected a similar but slightly different subset of features. By defining features selected by 

at least two approaches as important features, we discovered 13 important features (Figure 3-4). They 

are: 1) Folding energy; 2) Seed match; 3) Accessibility; 4) AU Content, 5) Stem conservation; 6) 

Flanking conservation; 7) m/e motif; 8) The total number of paired positions; 9) The length of the 

target mRNA region; 10) The length of the largest consecutive pairings; 11) The position of the 

largest consecutive pairings relative to the 5’ end of miRNA; 12) The number of paired positions at 

the miRNA 3’ end. Recall miRNA 3’ end meant the last 7 positions of a miRNA; 13) The difference 

between the number of paired positions in the seed region and that in the miRNA 3’ end.  

 

Figure 3-4 Feature selection  
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An interesting observation from Figure 3-4 was the removal of one and only one conventional 

feature, the difference between stem and flanking conservation. This feature was used in previous 

studies (Pollard, Hubisz et al. 2010, Helwak, Kudla et al. 2013).  The removal of this feature may be 

explained by the fact that most positive target sites from CLASH experiments were from coding 

regions and there was not much difference in terms of conservation between the seed regions and the 

flanking regions of target sites in coding regions. Because true target sites were functional and 

conserved, two features related to the conservation in miRNA-mRNA stem regions and in flanking 

regions around the stems, respectively, were selected. 

 

In addition to the six selected conventional features (folding energy, seed-matching, accessibility, 

AU content), four new features were selected by all four approaches (Figure 3-4). These features 

were the m/e motif, the length of the target site, the length of the largest consecutive pairings, and the 

difference between the number of paired positions in the seed region and that in the miRNA 3’ end. 

The inclusion of the m/e motif implied that there existed preferred matching positions shared by all 

miRNAs. The length of the target site was selected, showing the importance of the binding 

preference of miRNAs to mRNA regions with specific lengths. The length of the largest consecutive 

pairing positions mattered, which extended the concept of seed match, as seed match was just a 

simple case with a long consecutive pairing positions. The difference between the number of paired 

positions in the seed region and that in the miRNA 3’ end also suggested that the seed match may be 

unimportant, given a high-quality 3’ end region matching. This also supported the idea that a long 

consecutive matching region is critical for functional miRNA target sites.  
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We further investigated the importance of the 13 selected features by the rank-sum test (Mann and 

Whitney 1947) (Figure 3-4). In brief, for each selected feature, we calculated its value for all positive 

target sites and for their corresponding negative target sites. We then compared the two groups of 

numbers by the rank-sum test. The numbers on the right side of Figure 3-4 showed the p-values of 

the corresponding features. All 13 selected features had a significant difference between the positive 

target sites and negative sites (p-value<1.95e-5). Some significant features based on the rank-sum 

test were not selected by the four machine learning methods, which may be due to the fact that the 

contribution from the combination of the selected 13 features can already replace that of these 

removed features. In fact, we calculated the correlation between every pair of the 18 features and 

found that the discarded significant features correlate well with certain important features.  

3.2.3.2 TarPmiR Had a >55% Recall and a >19.1% Precision. 

With the 13 selected features, we developed the TarPmiR method to predict miRNA target sites in 

the entire regions of mRNAs. TarPmiR applied the random-forest based approach for target site 

prediction. It applied the random forests approach instead of the other three approaches because 

when tested on five testing datasets, the random forests based approach always gave better recalls 

and precisions (Table 3.3).  
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Table 3.3 Recall and precision of different methods on five testing datasets 

 

To investigate the recall and precision of TarPmiR, we tested it on the five testing datasets described 

in Material and Methods. The precision and recall of TarPmiR in each set of test data were shown in 

Table 3.3. Since the TarPmiR predictors built on each of the five training datasets had similar 

precision and recall, we chose the first TarPmiR predictor in our developed tool and in the following 

analyses. TarPmiR had a 55.1% recall and a 19.1% precision, which were higher than the recall and 

precision of existing methods reviewed in (Reczko, Maragkakis et al. 2011). Note that TarPmiR had 

a much smaller precision and recall than the above four methods (columns 2 to 5 in Table 3.3), 

because it predicted target sites from the entire mRNA sequences instead of the 8514 sites that were 

not used for training. 

3.2.3.3 TarPmiR Predicted the Majority of True Target Sites in Independent Datasets. 

To investigate whether TarPmiR was able to predict true target sites in non-CLASH datasets, we 

applied it to two PAR-CLIP datasets in the  

 

 

Lasso Logistic Randomized Logistic STEP-Wise Logistic Random Forest TarPmiR 

 Recall Precision Recall Precision Recall Precision Recall Precision Recall  Precision 

T1 0.8549 0.7765 0.8539 0.7785 0.8559 0.7795 0.8740 0.8283 0.5514 0.1905 

T2 0.8736 0.7713 0.8746 0.7730 0.8751 0.7736 0.8921 0.8296 0.5227 0.1626 

T3 0.8315 0.7626 0.8319 0.7898 0.8320 0.7904 0.8686 0.8253 0.5303 0.1661 

T4 0.836 0.7871 0.8411 0.7903 0.838 0.7894 0.8776 0.8266 0.5507 0.1902 

T5 0.8856 0.7639 0.8878 0.7662 0.8895 0.7649 0.8989 0.8173 0.5583 0.1909 
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HEK293 cell (Material and Methods). There were 16041 “true” target sites in 10023 mRNAs from 

the first dataset (dataset I). Moreover, the reads of the top 60 miRNAs and top 120 miRNAs 

accounted for more than 90% and 99%, respectively, of the total PAR-CLIP reads in this dataset. By 

inputting 60 miRNAs and 10023 mRNAs, TarPmiR predicted 240605 target sites, which included 

74.2% of true target sites (Table 3.4). Similarly, by inputting 120 miRNAs and 10023 mRNAs, 

TarPmiR predicted 481135 target sites, which included 86.3% of true target sites (Table 3.4). The 

percentages of correctly predicted true target sites should be considered underestimated, as a portion 

of true target sites may not be target sites of the 60 or 120 miRNAs. By considering the 16041 “true” 

target sites as all target sites in these mRNAs, we found that TarPmiR had a >74% recall in this 

dataset (Table 3.4). For the second PAR-CLIP dataset (dataset II), there were 43251 “true” target 

sites in 17794 mRNAs. Because the cell was the same as that in the first PAR-CLIP dataset, we 

assumed that mainly 60 or 120 miRNAs related to these target sites. Similarly, we found that 

TarPmiR was able to identify 79.3% and 89.8% of “true” target sites, when inputting 60 miRNAs 

and 120 miRNAs, respectively, together with the 17794 mRNAs (Table 3.4). 
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Table 3.4 Comparison of four methods on independent datasets 

 

The above analyses demonstrated the successful performance of TarPmiR in the human dataset 

in the same cell type. It was unclear how well TarPmiR performed in other species and in other 

cell types. We thus applied TarPmiR to a third independent dataset, the mouse HITS-CLIP 

dataset in the cortex cell (dataset III). There were 119 potential miRNAs and 2953 mRNAs 

involved in a total of 11080 target sites. With the input of these 119 miRNAs and 2953 mRNAs, 

TarPmiR predicted 285491 target sites in total. There were 10766 of the 11080 (97.2%) target 

sites predicted by TarPmiR (Table 3.4).  

 

Data 

set 

# of 

miRNAs 

input 

Performance 

measurement 

TarPmiR miRanda TargetScan miRmap 

I  

 

60 # of predictions 240605 246311 219304 504447 

% of correct predictions 11904/16041=74.2% 7061/16041=44.0% 6248/16041=39.0% 7121/16041 =44.4% 

Recall 0.742 0.440 0.390 0.444  

Precision 0.0495 0.0287 0.0285 0.014 

120 # of predictions 481135 476827 461280 906654 

% of correct predictions 13846/16041=86.3% 9683/16041=60.4% 8969/16041=55.9% 10342/16041=64.5% 

Recall 0.863 0.604 0.559 0.645 

Precision 0.0288 0.0203 0.0194 0.0114 

II 

 

60 # of predictions 469752 453880 437791 971238 

% of correct predictions 34301/43251 =79.3% 20378/43251 =47.1% 17556/43251 =40.6% 20543/43251 =47.5% 

Recall 0.793 0.471 0.406 0.475 

Precision 0.0730 0.0449 0.0401 0.0211 

120 # of predictions 961112 902611 922373 1952258 

% of correct predictions 38821/43251= 89.8% 23762/43251= 54.9% 24578/43251= 56.8% 25667/43251= 59.3% 

Recall 0.898 0.549 0.568 0.593 

Precision 0.0403 0.0263 0.0266 0.0131 

III 119 # of predictions 285491 439485 875442 341773 

% of correct predictions 10766/11080=97.2% 9069/11080=81.8% 10084/11080=91.0% 7840/11080=70.8% 

Recall 0.972 0.818 0.910 0.708 

Precision 0.0377 0.0206 0.0115 0.0229 

IV 50 # of predicted interactions 102324 87462 69184 113211 

% of correct predictions 5515/15386=35.8% 4335/15386=28.2% 3821/15386=24.8% 4531/15386=29.4% 

Recall 0.358 0.282 0.248 0.294 

Precision 0.0539 0.0496 0.0552 0.0400 

100 # of predicted interactions 412149 337863 286667 413213 

% of correct predictions 8127/15562=52.2% 6442/15562=41.4% 5644/15562=36.3% 5323/15562=34.2% 

Recall 0.522 0.414 0.363 0.342 

Precision 0.0197 0.0191 0.0197 0.0129 
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In addition to the above analyses on the crosslinking based data, we tested TarPmiR using the 

annotated miRNA-mRNA interactions in TarBase 6.0 (dataset IV) (Table 3.4). For the top 50 

miRNAs and the corresponding 9823 target mRNAs, TarPmiR predicted 35.8% of true target 

mRNAs (Methods).  For the top 100 miRNAs and the corresponding 9869 target mRNAs, 

TarPmiR predicted 52.2% of true target mRNAs (Table 3.4) (Methods). 

3.2.3.4 TarPmiR Showed Superior Performance to Existing Approaches. 

We compared TarPmiR with two widely used tools miRanda (9) , targetScan (8,13) and a 

recently published tool, miRmap (Vejnar and Zdobnov 2012, Vejnar, Blum et al. 2013). The 

comparison was made on the CLASH dataset, the three independent datasets, and the two 

databases described above. Overall, TarPmiR with the default cutoff 0.5 had a much higher 

recall and precision than the three existing methods on the CLASH dataset (Table 3.5). For 

instance, TarPmiR had a recall of 55.1%, which was at least 10% higher than other approaches. 

TarPmiR had a precision of 19.1%, which was at least 9% higher than other approaches.  

 Table 3.5 Comparison of different methods on the CLASH dataset 

 

On the three independent datasets, we compared TarPmiR with the other three methods (Table 

3.4). Overall, TarPmiR had a similar or much smaller number of predicted target sites, while it 

had much more known miRNA target sites predicted in each dataset. By assuming the CCRs 

Method TP  

 

FN  

 

FP 

 

Recall 

TP/(TP+FN) 

Precision 

TP/(TP+FP) 

F1-score 

TarPmiR  4695 3819 283462 0.551 0.191 0.284 
miRanda 3852 4662 285708 0.452 0.069 0.120 

TargetScan 1164 7350 213885 0.136 0.101 0.116 
Mirmap 1821 6693 297610 0.214 0.056 0.089 
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from PAR-CLIP and target sites from HITS-CLIP were the only true miRNA target sites in the 

corresponding mRNAs in the corresponding datasets, we found that TarPmiR had a recall at least 

6.2% higher than other methods, and a precision at least 0.85% higher than other methods. Note 

that the performance of all four methods was relatively high in the mouse dataset than other 

independent datasets, because miRNA-mRNA interactions in this dataset were mainly inferred 

and majorly based on seed regions (Chi, Zang et al. 2009). 

 

For the known miRNA-mRNA interactions in TarBase 6.0, we also compared TarPmiR with 

other three methods (Table 3.4). TarPmiR had a similar or slightly larger number of predicted 

interactions, while it predicted much more known miRNA-mRNA interactions. Similar to the 

results on crosslinking based datasets, TarPmiR had a much higher recall and a higher precision 

than other methods.  

 

We also compared the running speed of the four methods. Because TarPmiR was a machine 

learning based method and it calculated more features, it was much slower than miRanda and 

TargetScan. The running speed was similar to that of Mirmap, which was also a machine 

learning based method. It was worth pointing out that, although TarPmiR was relatively slow, its 

speed was reasonable. For instance, it took TarPmiR about 7940 CPU seconds to predict target 

sites of 20 miRNAs in 400 mRNA sequences, on average each 2000 nt long. 
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3.2.4 Discussion 

In this study, we identified seven new features together with six conventional features of miRNA 

target sites. Based on these 13 selected features, we developed a new approach called TarPmiR 

to predict miRNA target sites. We tested TarPmiR on a human CLASH dataset, two human 

PAR-CLIP datasets, a mouse HITS-CLIP dataset, and a general dataset from TarBase 6.0, and 

showed that TarPmiR performed at least the same or better than three existing approaches. 

TarPmiR is freely available at http://hulab.ucf.edu/research/projects/miRNA/TarPmiR/ . 

 

Not all new features were completely new. We claimed some features as new because they were 

not used by most of the existing tools, such as miRanda (Enright, John et al. 2004), TargetScan 

(Grimson, Farh et al. 2007, Friedman, Farh et al. 2009), DIANA-microT-CDS (Maragkakis, 

Reczko et al. 2009, Paraskevopoulou, Georgakilas et al. 2013), rna22-gui (Loher and Rigoutsos 

2012), TargetMiner (Bandyopadhyay and Mitra 2009), PITA (Kertesz, Iovino et al. 2007), 

RNAhybrid (Krüger and Rehmsmeier 2006), etc. However, several new features were mentioned 

in previous studies directly or indirectly. For instance, Thomason et al stated that “some 

validated miRNA target sites do not have a complete seed match but instead exhibit 11–12 

continuous base pairs in the central region of the miRNA” (Thomson, Bracken et al. 2011). We 

observed similar target sites in the CLASH dataset and proposed the feature “The length and 

position of the longest consecutive pairs”.  
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The selected new features significantly improved the prediction accuracy of TarPmiR. To show 

the contribution of the new features to the accuracy of TarPmiR, we removed the seven new 

features and retrained random forests in TarPmiR. Compared with the original TarPmiR with 13 

features, the recall and precision of the modified TarPmiR dropped 8.6% and 9.7%, respectively.  

We also compared the predicted true target sites by different approaches. TarPmiR had the 

largest number of predicted true sites shared by other tools. However, the percentage of shared 

true target sites predicted by TarPmiR was lower than that of other tools, suggesting that 

TarPmiR complements existing tools by predicting sites that cannot be predicted by other tools. 

In fact, there are 2090 ‘non-seed-matching’ sites in the first CLASH test dataset. TarPmiR was 

able to identify 1585 (75.8%) of those sites. On the other hand, miRanda and TargetScan were 

only able to predict 173 (8.28%) and 34 (1.6%) sites, respectively. This also suggested that the 

traditional tools like TargetScan and miRanda almost cannot predict non-seed-matching binding 

sites. 

 

It is also worth mentioning that CLASH experiments may pick up direct and indirect miRNA 

target sites. The Argonaut proteins are guided by miRNAs to bind mRNAs, which is referred to 

as miRNA-dependent recruitment and results in direct miRNA target sites. There is also a 

miRNA-independent Argonaut protein recruitment mechanism, in which Argonaut proteins are 

recruited to target mRNAs by protein-protein interaction with RNA-binding proteins and thus 

miRNAs do not interact with the mRNAs directly (Meister 2013). In the future, one may want to 

distinguish these two types of target sites from the CLASH experiments before training 
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predictors for target site prediction. In this way, we may also obtain better features and improve 

the prediction accuracy. 

 

Because of the existence of indirect target sites in CLASH data, the recall of TarPmiR on the 

CLASH testing datasets may be underestimated. In fact, TarPmiR had a much higher recall on 

the three independent human and mouse datasets, suggesting that TarPmiR may have a recall 

larger than 74%. On the other hand, TarPmiR had a much lower precision on the independent 

datasets, which may be underestimated as well. This was because we treated all segments other 

than the CCRs or identified miRNA target sites in these independent datasets as true negative 

target sites, which may not be the case.  

 

By the time of this study, only one CLASH dataset was publicly available (Helwak, Kudla et al. 

2013). This human CLASH dataset was used to train TarPmiR. We applied TarPmiR to human 

and mouse datasets and demonstrated that it works well on these datasets. In the future, with 

more CLASH datasets available, more important miRNA target site features including tissue-

specific features may be discovered and the accuracy of TarPmiR, especially its precision, may 

be further improved.  
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CHAPTER 4: CONCLUSION AND FUTURE WORK 

4.1 Conclusion 

This dissertation mainly focuses on the gene regulation studies at both the transcriptional and 

post-transcriptional levels.  At the transcription level, the studies are mainly on the TF binding. 

Systematic discovery of TF binding sites (TFBSs) and binding motifs is crucial for the study of 

gene transcriptional regulation (Birney, Stamatoyannopoulos et al. 2007). The binding of TFBSs 

by TFs can activate or repress the transcription of genes near the TFBSs, thus can modulate gene 

expression.  In this dissertation, we proposed 3 TF binding prediction tools: MERCED, 

SIOMICS, and SIOMICS2. These tools outperformed the existing TF binding prediction tools 

such as DREME in terms of prediction accuracy and running efficiency.  They are very helpful 

for improving the understanding of transcriptional regulation mechanism, especially on TF 

binding.   

MERCED: Genome-wide identification of CREs in C. reinhardtii genome is critical to 

further study gene regulation and molecular functions. We thus performed the first large-

scale CRE prediction in C. reinhardtii. Different from available CRE prediction methods, 

our approach considers the species-divergence-time and the nucleotide content rather 

than depends on MSA and mismatch-number-counting to determine whether DNA 

segments are conserved CREs and motifs. According to sequence permutation test, the 

developed method has very low false discovery rate. Compared with alignment and 

mismatch-number-counting-based approaches, the developed method is more efficient in 
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filtering divergent segments while keeping conserved segments that have quite a few 

mismatches compared with their counterpart segments.  

 

SIOMICS: We developed a novel approach SIOMICS to systematically discover motifs 

and TFBSs from ChIP-seq data. Different from available methods, SIOMICS does not 

depend on limited information of known motifs and simultaneously considers multiple 

motifs. Tested on experimental and simulated data, we shown that SIOMICS identifies 

motifs of more known cofactors and identifies more shared motifs in the experimental 

data. At the same time, SIOMICS has a low false positive rate when tested in the 

simulated data. In addition, we shown SIOMICS is as fast as other methods especially 

when the ChIP-seq datasets are large. SIOMICS is thus a useful alternative method for 

motif discovery. 

 

SIOMICS2: We developed a useful tool set SIOMICS for systematic discovery of motifs 

in ChIP-seq datasets. Tested on 13 real ChIP-seq datasets and 13 random datasets, we 

showed that SIOMICS predicted motifs of known cofactors in each real dataset while no 

motif in any random dataset. In this extension version of the SIOMICS tool –

SIOMICS_Extension, we modified the motif length of a motif based on its predicted 

TFBSs from all motif modules containing this motif. The developed SIOMICS tool set 

(Original SIOMICS and SIOMICS_Extension) together with its manual, test datasets, and 

others is freely available at http://www.cs.ucf.edu/∼xiaoman/SIOMICS/SIOMICS.html. 

http://www.cs.ucf.edu/~xiaoman/SIOMICS/SIOMICS.html


www.manaraa.com

 

115 

 

We will continue to keep the updated versions on this site to help researchers fully utilize 

the potential of the ChIP-seq data.  

At the post-transcription level, the studies are mainly on the microRNA targeting. MicroRNAs is 

one of the most abundant gene regulatory molecules in animals and plants. In human, there are 

over 1000 miRNAs identified. MicroRNA are reported to regulate more than 60% of protein-

coding genes in human the miRNAs and they are also involved in diverse regulatory pathways, 

as well as in disease development, progression, prognosis, and treatment. Even through the 

microRNAs are very important, our understanding of their regulatory functions is still very 

limited.  As a result, the cellular functions and pathways, which are affected by microRNA in 

various cancers, are still unknown in most cases. Therefore, one of the major challenges of 

current miRNA study is identifying the regulatory targets of miRNAs. In this studies, we 

proposed several miRNA binding target prediction tools, which show advantages or superior 

performance compared with existing tools.  

miRModule: We studied miRNA modules based on experimentally determined miRNA 

target sites. We predicted 181 miRNA modules and 306 potential miRNA modules. We 

demonstrated that miRNA modules preferred to bind weak sites and favored a 

combination of all unconventional sites. We also observed that miRNA modules 

preferred to bind in CDSs and favored the first and the last exons. We confirmed that 

more than 70% of miRNA modules bound sites within specific ranges, with enrichment 

in two previously known ranges. However, many more adjacent sites bound by miRNA 

modules were >130 nucleotides apart. We further showed that unconventional target sites 
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of miRNA modules were often within shorter distances than other combinations of target 

sites. Our study shed new light on miRNA binding. 

 

TarPmiR: In this study, we identified seven new features together with six conventional 

features of miRNA target sites. Based on these 13 selected features, we developed a new 

approach called TarPmiR to predict miRNA target sites. We tested TarPmiR on a human 

CLASH dataset, two human PAR-CLIP datasets, a mouse HITS-CLIP dataset, and a 

general dataset from TarBase 6.0, and showed that TarPmiR performed at least the same 

or better than three existing approaches. TarPmiR is freely available at 

http://hulab.ucf.edu/research/projects/miRNA/TarPmiR/ . 

http://hulab.ucf.edu/research/projects/miRNA/TarPmiR/
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4.2 Future Work 

4.2.1 SIOMICS3 

There are approximately 2600 proteins in the human genome that contain DNA-binding 

domains, most of which are presumed to function as transcription factors (Babu, Luscombe et al. 

2004).  There are about 1500 transcription factors (TFs) that play an important role in 

transcriptional regulation by binding to the genome alone or in complexes (Vaquerizas, 

Kummerfeld et al. 2009).  Chromatin immunoprecipitation (ChIP) followed by high-throughput 

sequencing (ChIP-seq)  is the current method of choice to study the genomic binding locations of 

transcription factors, as well as the localization of epigenetic regulatory marks. A typical TF 

ChIP-Seq experiment generally yields tens of thousands of predicted binding locations (TF 

ChIP-seq peaks).   

 

Plenty of specialized software tools have been recently developed for motif discovery of TF 

ChIP-seq peaks. One common bottleneck of many exiting tool is that the underlying algorithm 

was originally designed for motif discovery from a small set of co-regulated promoters, and 

therefore they can hardly handle the large scale TF ChIP-seq data.  Those tools always truncate 

the TF ChIP-seq peaks or reduce the number of the peaks to circumvent the limitation. A second 

limitation is that most algorithms are traditionally monad-based and therefore they can only 

predict monad motifs. All the dyad motifs are completely ignored. Dyad is pairs of short 

oligonucleotide (3–4 bp), separated by a spacing of fixed width but variable content (e.g., 
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CTA…TGG) (Defrance, Sand et al. 2008), while the monad motifs are short contiguous patterns.  

A third limitation is that most algorithms do not consider co-working of different TFs. They did 

not provide the information of which TFs always work together. (We name it motif modules). A 

fourth limitation is that lots of current ChIP-Seq motif finding tools are running slow especially 

when the number of TF ChIP-seq peaks is large.  

 

Facing those limitations, we are going to improve the existing SIOMICS pipeline to fulfill the 

following practical needs. First of all, it can handle large scale TF ChIP-seq peaks. There is no 

limitation on number or width of input peaks.  Second, it can predict both the monad and dyad 

motif at the same time.  Third, it can automatically predict motif modules so that you might have 

a sight on which TFs are working together.  Last but not least, the time efficiency should be 

comparable to other widely used tools especially when input data set is large.   
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4.2.2 miRHMM 

microRNAs (miRNAs) are ~22 nt endogenous RNAs involved in the regulation of gene 

expression(Ambros 2001, Bartel 2004). The regulatory functions of microRNAs are carried out 

through the RNA-induced silencing complex (RISC). The microRNAs guide the binding of the 

RISC through the base-paring to the target mRNA and thereby negatively regulate its expression. 

MicroRNAs is one of the most abundant gene regulatory molecules in animals and plants. In 

human, there are over 1000 miRNAs identified (Griffiths-Jones, Grocock et al. 2006) and each 

of them has the potential to bind to hundreds of target genes. More than 60% of protein-coding 

genes appear to be regulated by microRNAs (Friedman, Farh et al. 2009). Besides, the miRNAs 

are involved in diverse regulatory pathways (Chang, Johnston et al. 2004, Bilen, Liu et al. 2006, 

Bilen, Liu et al. 2006), as well as in disease development, progression, prognosis, and 

treatment(Yang, Coukos et al. 2008, Yu, Chen et al. 2008).  For example, human miR-155 has 

been reported to mediate T cell dependent anti-body response(Rodriguez, Vigorito et al. 2007, 

Thai, Calado et al. 2007) and it was also involved in many cancers  like lymphomas, breast 

cancer, lung, and colon cancer.(Metzler, Wilda et al. 2004, Kluiver, Poppema et al. 2005, 

Yanaihara, Caplen et al. 2006).  

  

  

Even through the microRNAs are very important, our understanding of the regulatory functions 

of them is still very limited.  As a result, the cellular functions and pathways, which are affected 
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by microRNA in various cancers, are still unknown in most cases. Therefore, one of the major 

challenges of current miRNA study is identifying the regulatory targets of miRNAs.  Because of 

a huge number of microRNAs and their potential targets, a mere experiment prediction design is 

very laborious and expensive.  Computational target prediction methods together with the high-

throughput experiments would be a great choice for identifying miRNA targets.  

 

A very large number of computational miRNA target prediction methods has been published in 

the past decade. They were proposed based on different sets of miRNA binding features.  

TargetScan (Lewis, Shih et al. 2003, Lewis, Burge et al. 2005, Grimson, Farh et al. 2007) was 

first proposed in 2003 and it’s still one of most popular miRNA target prediction algorithms 

nowadays.  Those early proposed miRNA target prediction tools, limited by the availability of 

relevant experiment data, are mainly based on these traditional features, including seed, energy, 

conservation, accessibility etc. (Peterson, Thompson et al. 2014). These ‘traditional feature’ 

based algorithms include TargetScan (Lewis, Shih et al. 2003, Lewis, Burge et al. 2005, 

Grimson, Farh et al. 2007), miRanda(Enright, John et al. 2004, John, Enright et al. 2004, Betel, 

Wilson et al. 2008), PITA(Kertesz, Iovino et al. 2007), RNAhybrid (Krüger and Rehmsmeier 

2006), etc. Recently, many new miRNA target prediction algorithms were proposed as the 

increasing availability of the relevant miRNA target experiments, such as CLIP-seq (Ule, Jensen 

et al. 2003),   PAR-CLIP (Hafner, Landthaler et al. 2010), CLASH (Helwak, Kudla et al. 2013), 

etc. These new miRNA target prediction algorithms were based on the important new features 

learned from the experiment data using statistical/ machine learning models. These ‘new data’ 
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driven algorithms include microT-CDS (Reczko, Maragkakis et al. 2012, Paraskevopoulou, 

Georgakilas et al. 2013), MiRmap (Vejnar and Zdobnov 2012), MirTarget (Wang and El Naqa 

2008),  PicTar (Krek, Grün et al. 2005), etc.   

 

Most existing miRNA target prediction tools, both tradition feature based and new data based, 

are mainly considering the miRNA target prediction in a site-specific manner. These tools are 

only using the binding features between each pair of miRNA and mRNA to predict. However, 

the efficiency of miRNA-mediated regulation can be affected by multiple system-wide factors 

(not binding site-specific) (Arvey, Larsson et al. 2010, Sumazin, Yang et al. 2011), such as 

miRNA/mRNA expression level and combinatorial binding of multiple microRNAs.  None of 

the traditional feature-based methods (e.g. TargetScan, miRanda) has taken the system-wide 

factors into consideration.  Some of the new data-driven tools tried to make use of the system-

wide factors but they are also very limited. For example,  PicTar (Krek, Grün et al. 2005) is a 

computational method to identify the common target for miRNAs, but it does not even take the 

miRNA expression in determining  the relative binding.  To fill this gap, we need to develop a 

miRNA binding prediction tools, which can take the system-wide factors such as miRNA 

expression into consideration.  
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